Dynamics of coupled fluid system and its applications to atmosphere and ocean.

耦合流体系统动力学及其在大气和海洋中的应用。

基本信息

  • 批准号:
    05804021
  • 负责人:
  • 金额:
    $ 1.47万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
  • 财政年份:
    1993
  • 资助国家:
    日本
  • 起止时间:
    1993 至 1994
  • 项目状态:
    已结题

项目摘要

Atmosphere and oceans are a complicated system where many phenomena are interacting. These have been studied to understand specific phenomenon with some appropriate simplifications. These smplifications, however, can not be applied to total system that consists of many elements, because one simplificaion applied to an element differs from others. Although the computer can solve the problem without any simplificaion, its solution contains all physics and very complicated so that conventional simple criteria can not be applied. This study aims to construct a comprehensive theory of the system of fluid dynamics, that is compatible with conventional physical criteria.In this study, it is shown that the conventional stability problem of the fluid is equivalent with resonance of structural waves which is defined in specific manner. This theory has been extended to more general problems considering the meaning of wave momentum. The extended theory shows that the interaction coefficient, which appears in resonant equations, is proportional to the wave momenta of the structural waves. This indicate that the new theory is not only formaly beautiful, but it has physical bases. Further extension of the theory is possible and it can be applied to western boundary current of the ocean.
大气和海洋是一个复杂的系统,许多现象在其中相互作用。我们对这些现象进行了研究,以便通过适当的简化来理解具体的现象。然而,这些简化不能应用于由许多元素组成的整个系统,因为应用于一个元素的一个简化与其他简化不同。虽然计算机可以不做任何简化地解决这个问题,但它的解包含了所有的物理性质,而且非常复杂,以致于传统的简单准则无法适用。本研究旨在建立一个与常规物理准则兼容的流体动力学系统的综合理论。本文的研究表明,流体的常规稳定性问题与结构波的共振问题是等价的,结构波的共振是有具体定义的。考虑到波动量的意义,这一理论已被推广到更一般的问题。推广理论表明,在共振方程中出现的相互作用系数与结构波的波动量成正比。这表明,新理论不仅在形式上很漂亮,而且有物理基础。该理论有进一步推广的可能,并可应用于海洋西边界流。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Kobayashi and S.Sakai: "Barotropic unstable modes in zonal and meridional channel on the beta-plane" Geophys. Astrophys. Fluid Dyn.vol.71. 73-103
S.Kobayashi 和 S.Sakai:“β 平面上纬向和经向通道的正压不稳定模式”地球物理学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S. Kobayashi and S. Sakai: "Barotropic unstable modes in zonal and meridional channel on the beta-plane" Geophys. Astrophys. Fluid Dyn.71. 73-103 (1993)
S. Kobayashi 和 S. Sakai:“β 平面上纬向和经向通道的正压不稳定模式”地球物理学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.Kobayashi and S.Sakai: "Barotropic unstable modes in zonal and meridional channel on the beta-plane" Geophys.Astrophys.Fluid Dyn.71. 73-103 (1993)
S.Kobayashi 和 S.Sakai:“β 平面上纬向和经向通道中的正压不稳定模式”Geophys.Astrophys.Fluid Dyn.71。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SAKAI Satoshi其他文献

SAKAI Satoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SAKAI Satoshi', 18)}}的其他基金

Role of Pin1 in the development of pulmonary hypertension and therapeutic application
Pin1 在肺动脉高压发生中的作用及治疗应用
  • 批准号:
    16H05220
  • 财政年份:
    2016
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The importance of polyamine activation in pulmonary hypertension
多胺活化在肺动脉高压中的重要性
  • 批准号:
    15K15318
  • 财政年份:
    2015
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A study to suggest education using the ICT
建议利用信息通信技术进行教育的研究
  • 批准号:
    24531251
  • 财政年份:
    2012
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The elucidation of the city cooling process by the observation of vertical profile of the temperature over a city
通过观察城市上空温度的垂直剖面来阐明城市降温过程
  • 批准号:
    22540450
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The mechanism for blood pressure elevation in newly developed obesity mouse and the application for the prevention and treatment of hypertension
新培育的肥胖小鼠血压升高的机制及其在防治高血压中的应用
  • 批准号:
    22500656
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Driving mechanism of the Deep Antarctic Circumpolar Current by the meso-scale eddies..
中尺度涡驱动南极深部绕极流的机制
  • 批准号:
    14540407
  • 财政年份:
    2002
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
General Studies on the City Walls in Ancient Italy
古意大利城墙常识
  • 批准号:
    13610465
  • 财政年份:
    2001
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Dynamics of the deep water formation in the ocean--experimental approach--
海洋深水形成的动力学--实验方法--
  • 批准号:
    07640571
  • 财政年份:
    1995
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Origins of Ancient Cities in the 5th B.C Century Italy in Italy
意大利公元前5世纪古城的起源
  • 批准号:
    07610399
  • 财政年份:
    1995
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DIELECTRIC SPECTROGRAM FOR EVALUATION OF ISCHEMIC INJURY OF CIRRHOTIC LIVER
评估肝硬化缺血性损伤的介电谱图
  • 批准号:
    06671260
  • 财政年份:
    1994
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

PRIMES: The Inverse Eigenvalue Problem for Graphs and Collaboration to Promote Inclusivity in Undergraduate Mathematics Education
PRIMES:图的反特征值问题和协作以促进本科数学教育的包容性
  • 批准号:
    2331072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Studies on the Inverse Eigenvalue Problem for Graphs
图的反特征值问题的研究
  • 批准号:
    563147-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 1.47万
  • 项目类别:
    University Undergraduate Student Research Awards
Inverse Eigenvalue Problem, Totally Positive Matrices
逆特征值问题,全正矩阵
  • 批准号:
    RGPIN-2019-05275
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Grants Program - Individual
Inverse Eigenvalue Problem, Totally Positive Matrices
逆特征值问题,全正矩阵
  • 批准号:
    DGECR-2019-00324
  • 财政年份:
    2019
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Discovery Launch Supplement
Asymptotic solutions of the plasmonic eigenvalue problem and applications
等离子体特征值问题的渐近解及其应用
  • 批准号:
    EP/R041458/1
  • 财政年份:
    2018
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Research Grant
Application of discrete and ultradiscrete integrable systems of hungry type to eigenvalue problem
饥饿型离散和超离散可积系统在特征值问题中的应用
  • 批准号:
    16K21368
  • 财政年份:
    2016
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Linear Response Eigenvalue Problem: New Minimization Principles and Efficient Algorithms
线性响应特征值问题:新的最小化原理和高效算法
  • 批准号:
    1317330
  • 财政年份:
    2013
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Standard Grant
Theory of one-dimensional electronic Casimir effect in terms of complex eigenvalue problem of Hamiltonian and Liouvilian
哈密​​顿量和刘维尔复特征值问题的一维电子卡西米尔效应理论
  • 批准号:
    24540327
  • 财政年份:
    2012
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Analysis of non-integrable system by the eigenvalue problem of the Liouvillian in classical mechanics
经典力学中刘维尔特征值问题分析不可积系统
  • 批准号:
    23654136
  • 财政年份:
    2011
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Eigenvalue problem of the Lame operator on a domain with a multi- structure
多结构域上Lame算子的特征值问题
  • 批准号:
    22540216
  • 财政年份:
    2010
  • 资助金额:
    $ 1.47万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了