Study on quasi three-dimensional numerical model for nonlinear random waves.
非线性随机波准三维数值模型研究。
基本信息
- 批准号:10450180
- 负责人:
- 金额:$ 4.03万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1998
- 资助国家:日本
- 起止时间:1998 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this study, a numerical model of nonlinear, random wave transformation in the vertical two dimensions is developed first. The basic equations of the model are the nonlinear mild-slope equations proposed by Isobe (1994), and an efficient numerical algorithm is developed in addition to the boundary condition at the wave generator which can generate long waves as well. A moving boundary is installed to deal with the wave motion in the surf zone. By integrating these factors, a numerical model is proposed to predict the profile, velocity and turbulence of random waves on a general topography from deep to shallow water. A two dimensional experiment is performed to develop and verify the numerical model by measuring the wave field including the swash zone.Next, the breaking criteria of short-crested random waves is studied to incorporate with a three dimensional numerical model for random waves. A short-crested random wave basin is developed to reproduce short-crested random wave fields. The wave generator is more sophisticated than existing ones, with a stable feed back system to absorb reflected waves. Data for the breaking criteria are obtained by experiments by this wave basin.To develop a quasi-three dimensional numerical model of nonlinear random waves, numerical models of wave transformation are developed based on the nonlinear mild-slope equations and Boussinesq equations. These models are verified by applying to the wave diffraction and run-up problems. By combining the Boussinesq equations model with a model to predict the vertical velocity distribution due to undertow, a quasi-three dimensional numerical model of nonlinear random waves is developed.
在这项研究中,非线性,随机波变换的数值模型在垂直的二维发展。模型的基本方程是Isobe(1994)提出的非线性缓坡方程,并在造波机处设置了边界条件,同时也设置了一个有效的数值算法。在碎波带中设置了一个动边界来处理波浪的运动。通过综合这些因素,提出了一个数值模式来预测从深水到浅水的一般地形上的随机波浪的剖面、速度和湍流度。通过二维波浪试验验证了数值模型的正确性,并对短峰随机波的破碎准则进行了研究,并将其与三维随机波数值模型相结合。为了再现短峰随机波场,建立了短峰随机波水池。波发生器比现有的更复杂,具有稳定的反馈系统来吸收反射波。为了建立准三维非线性随机波浪的数值模型,基于非线性缓坡方程和Boussinesq方程建立了波浪变形的数值模型。通过应用于波浪绕射和爬高问题,对模型进行了验证。将Boussinesq方程模型与底流垂向流速分布模型相结合,建立了准三维非线性随机波浪数值模型。
项目成果
期刊论文数量(48)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
有川太郎・磯部雅彦: "非線形緩勾配方程式を用いた砕波モデルの構築" 海岸工学論文集. 45. 141-145 (1998)
Taro Arikawa 和 Masahiko Isobe:“利用非线性缓坡方程构建破浪模型”海岸工程杂志 45. 141-145 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
鄭 培喜、余 錫平、磯部雅彦: "遡上波の高精度数値計算法の開発"海岸工学論文集. 46. 181-185 (1999)
郑培熙,余秀平,矶部雅彦:“助跑波高精度数值计算方法的发展”,海岸工程学报,46. 181-185 (1999)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Abohadima, S.M.Isobe: "On dispersion property of mild slope equation"Coastal Engineering Journal. 41(2). 183-200 (1999)
Abohadima,S.M.Isobe:“论缓坡方程的色散特性”海岸工程杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
渡辺 晃・中村裕史・佐々木 淳・小林 博・磯部雅彦: "斜め入射波の遡上とそれに伴う浜漂砂の数値モデル" 海岸工学論文集. 45. 186-190 (1998)
Akira Watanabe、Hiroshi Nakamura、Jun Sasaki、Hiroshi Kobayashi、Masahiko Isobe:“倾斜入射波的上升和相关海滩沙流的数值模型”海岸工程杂志 45. 186-190 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
P.Zheng and M.Isobe: "Analysis of dispersion and shoaling characteristics of linearized mild-slope equations" Coastal Engineering Journal. 40・2. 177-189 (1998)
P.Zheng 和 M.Isobe:“线性缓坡方程的分散和浅滩特性分析”海岸工程杂志 40・2(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ISOBE Masahiko其他文献
ISOBE Masahiko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ISOBE Masahiko', 18)}}的其他基金
Development of the dynamic control method of Material cycles basedon the 3 dimensional realtime monitoring systems in semi-enclosed bay
基于三维实时监测系统的半封闭湾物料循环动态控制方法开发
- 批准号:
22246065 - 财政年份:2010
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Development of the dynamic control method of nutrient cycles based on the 3 dimensional monitoring systems in semi-enclosed bays
基于三维监测系统的半封闭海湾养分循环动态控制方法研究
- 批准号:
19206053 - 财政年份:2007
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study on improvement of hypoxic water using micro-bubble aeration and prediction of its effects on long-term environmental charge.
微泡曝气改善缺氧水体的研究及其对长期环境负荷影响的预测
- 批准号:
14102026 - 财政年份:2002
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (S)
A NUMERICAL MODEL OF WAVE-RUN-UP AND RESULTING LONGSHORE SEDIMENT TRANSPORT DUE TO OBLIQUELY INCIDENT WAVE
波浪爬升及斜入射波引起的沿岸沉积物输送的数值模型
- 批准号:
08455227 - 财政年份:1996
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Nonlinear Waves in Lattices and Metamaterials
晶格和超材料中的非线性波
- 批准号:
2204880 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Universality in Nonlinear Waves and Related Topics
非线性波的普遍性及相关主题
- 批准号:
2204896 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Continuing Grant
Asymptotic analysis for partial differential equations of nonlinear waves with dissipation and dispersion
具有耗散和色散的非线性波偏微分方程的渐近分析
- 批准号:
22K13939 - 财政年份:2022
- 资助金额:
$ 4.03万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Dynamics and Stability of Nonlinear Waves
非线性波的动力学和稳定性
- 批准号:
2204788 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Continuing Grant
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
- 批准号:
2106157 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Novel Challenges in Nonlinear Waves and Integrable Systems
非线性波和可积系统的新挑战
- 批准号:
2106488 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Nonlinear waves in astrophysical discs
天体物理圆盘中的非线性波
- 批准号:
2603337 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Studentship
Collaborative Research: Stability and Instability of Periodically Stationary Nonlinear Waves with Applications to Fiber Lasers
合作研究:周期性平稳非线性波的稳定性和不稳定性及其在光纤激光器中的应用
- 批准号:
2106203 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant
Mathematics of Revealing Inaccessible Objects Using Linear and Nonlinear Waves
使用线性和非线性波揭示难以接近的物体的数学
- 批准号:
2109199 - 财政年份:2021
- 资助金额:
$ 4.03万 - 项目类别:
Standard Grant














{{item.name}}会员




