Invariants of knots and 3-manifolds
结和 3 流形的不变量
基本信息
- 批准号:15540063
- 负责人:
- 金额:$ 1.09万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
I organized researches on invariants of knots and 3-manifolds.I edited the proceedings of the workshop "Invariants of Knots and 3-Manifolds", which I organized in September 2001, and published the proceedings from the journal Geometry and Topology Monographs. In particular, I edited a list of problems, which was made based on problems given in the problem sessions of the workshop, and published it as a part of the proceedings.I studied the loop expansion of the Kontsevich invariant, in particular, the 2-loop polynomial, which presents the 2-loop part of the loop expansion. I presented the 2-loop polynomial of a knot in terms of finite type invariants of a spine of a Seifert surface of the knot, from the viewpoint that I regard the 2-loop polynomial of a knot as an equivariant Casson invariant of the infinite cyclic cover of the knot complement. I obtained a bound of the degree of the 2-loop polynomial of a knot by twice the genus of the knot, by calculating the presentation concretely … More introducing Gaussian diagrams. Further, I gave explicit presentations of the 2-loop polynomial for the torus knots and the knots of genus 1. Furthermore, I showed a cabling formula for the 2-loop polynomial, which gives the 2-loop polynomial for any cable knot of a given knot.I organized a low-dimensional topology seminar, jointly with Kazuo Habiro, who is a co-investigator of this research. The speakers were Sergei Duzhin, Kazuhiro Hikami, Andrew Kricker, Julien Marche, Jean-Baptiste Meilhan, Gregor Masbaum, Jorgen Andersen, Yoshiyuki Yokota, Jozef Przytycki, and their talks were on advanced topics in the area of invariants of knots and 3-manifolds. In particular, by financial supports from the grant of this research, Kricker and Marche stayed at the RIMS in two weeks. I think their talks and stays were very good, from the viewpoint of joint researches between them and me and the co-investigator, and from the viewpoint of research interactions between them and young researchers such as graduate students. Less
我组织了关于纽结和3-流形的不变量的研究。我编辑了2001年9月组织的“纽结和3-流形的不变量”研讨会的会议记录,并在《几何和拓扑学专著》杂志上发表了会议记录。特别是,我编辑了一个问题列表,这是根据在讲习班的问题会议上给出的问题,并将其作为会议录的一部分发表。我研究了Kontsevich不变量的循环扩展,特别是2-loop多项式,它表示循环扩展的2-loop部分。我根据纽结的塞弗特曲面的脊的有限型不变量来给出纽结的2-循环多项式,从我将纽结的2-循环多项式视为纽结补的无限循环覆盖的等变卡森不变量的角度出发。通过具体的计算,得到了纽结的2-圈多项式的次数以纽结亏格的2倍为界的一个界 ...更多信息 介绍高斯图。此外,我给出了明确介绍的2-循环多项式的环面结和结的亏格1。此外,我还展示了2-loop多项式的布线公式,它给出了给定结的任何电缆结的2-loop多项式。我与本研究的合作研究者Kazuo Habiro共同组织了一个低维拓扑研讨会。发言者谢尔盖Duzhin,Kazuhiro Hikami,安德鲁Kricker,朱利安马尔凯,让巴蒂斯特梅尔汉,格雷戈尔Masbaum,约根安徒生,Yoshiyuki横田,约瑟夫Przytycki,他们的会谈是先进的主题领域的不变量的结和3流形。特别是,通过这项研究的资助,Kricker和马尔凯在RIMS呆了两周。我认为,从他们与我和共同研究者之间的共同研究的角度来看,以及从他们与研究生等年轻研究人员之间的研究互动的角度来看,他们的谈话和停留都非常好。少
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A cabling formula for the 2-loop polynomial of knots
结的 2 环多项式的布线公式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:M.Brittenham;C.Hayashi;M.Hirasawa;T.Kobayashi;K.Shimokawa;K.Sakai (with K.H.Lee);H.konno;M.Miyanishi;T.Ohtsuki
- 通讯作者:T.Ohtsuki
T.Ohtsuki: "A cabling formula for the 2-loop polynomial of knots"Publ.RIMS.Kyoto Univ.. (to appear).
T.Ohtsuki:“结的 2 环多项式的布线公式”Publ.RIMS.Kyoto Univ..(即将出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Problems on invariants of knots and 3-manifolds
关于结和 3 流形不变量的问题
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Mikami;T.Mizutani;T.Ohtsuki (ed.)
- 通讯作者:T.Ohtsuki (ed.)
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OHTSUKI Tomotada其他文献
OHTSUKI Tomotada的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OHTSUKI Tomotada', 18)}}的其他基金
Equivariant invariants of knots and 3-manifolds
结和 3 流形的等变不变量
- 批准号:
21540077 - 财政年份:2009
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
19540073 - 财政年份:2007
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Invariants of knots and 3-manifolds
结和 3 流形的不变量
- 批准号:
17540073 - 财政年份:2005
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology related to invariants of knots and 3-manifolds
与结和 3 流形不变量相关的拓扑
- 批准号:
13640064 - 财政年份:2001
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
11640065 - 财政年份:1999
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Topology of knots and 3-manifolds
结和 3 流形的拓扑
- 批准号:
09640093 - 财政年份:1997
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Continuing Grant
Orderings in 3-manifold groups and Heegaard Floer L-spaces
3 歧管组和 Heegaard Floer L 空间中的订购
- 批准号:
20K03587 - 财政年份:2020
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conference on Classical and Quantum 3-Manifold Topology
经典与量子三流形拓扑会议
- 批准号:
1841116 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Conference Proposal - Structure of 3-manifold Groups
会议提案 - 3流形组的结构
- 批准号:
1747833 - 财政年份:2018
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Geometric Aspects Knot and 3-manifold Invariants
几何方面结和 3 流形不变量
- 批准号:
1708249 - 财政年份:2017
- 资助金额:
$ 1.09万 - 项目类别:
Standard Grant
Orderings in 3-manifold groups
3 歧管组订购
- 批准号:
16K05149 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Symmetries of spatial graphs by 3-manifold topology
三流形拓扑空间图的对称性
- 批准号:
16K05163 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Surgery on 4-manifolds by exceptional Dehn surgery on 3-manifold
通过特殊的 Dehn 3 歧管手术进行 4 歧管手术
- 批准号:
16K05143 - 财政年份:2016
- 资助金额:
$ 1.09万 - 项目类别:
Grant-in-Aid for Scientific Research (C)