Topological toric theory and combinatorics

拓扑环面理论和组合数学

基本信息

  • 批准号:
    17540092
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

I have beein developing the theory of toric varieties in algebraic geometry from a topological point of view for these years. At the same time, a research from the same viewpoint has been independently developed in England and Russia, and now this emerging subject is called Toric Topology. In this research, I mainly studied the relation between topology and Combinatorics jointly with Taras Panov, Zhi Lu etc, and have made effort for developing this new subject. In particular, I organized an international conference on Toric Topology for a week from the end of May 2006 at Osaka City University. The organizers are Megumi Harad (Toronto), Yael Karshon(Toronto) and Taras Panov(Moscow) except me. This conference was supported mainly by 21COE program "Constitution of wide-angle mathematical basis focused on knots", and other resources are research grants of Shigenori-Matsumoto, Taras Panov, Yoshitake Hashimoto and this my research grant. Fortunately, we had 140 participants and half of them … More are foreigners. We realized that many people are interested in this emerging area.As for my own research, I got the following outcome.(1) Gullemin-Zara have studied the relation between the topology of manifolds with torus actions and graph theory. This is a very interesting study because it introduces ideas of topology to the study of graphs. Motivated by their research, we have introduced the notion of torus graph and showed that its equivariant cohomology agrees with the face ring of a simplicial poset which was already introduced in commutative algebra. The paper of this research has appeared in Adv. Math. 212 (2007), 458-483.(2) It is known that equivariant cohomology contains a rich geometrical of a toric manifold and fits very well to the study of toric manifolds. In this research I have proved that equivariant cohomology completely distinguishes toric manifolds.(3) A Bott tower is an iterated CP^1 bundle and provides a good family of toric manifolds. I worked with Taras Panov on the topological classification of those Bott towers (the paper is submitted). Also, I worked with Dong Youp Suh on the topological classification of higher Bott towers which are higher dimensional generalization of Bott towers. Less
这些年来,我一直在从拓扑学的角度发展代数几何中的环变理论。与此同时,英国和俄罗斯也独立开展了一项基于相同观点的研究,现在这一新兴学科被称为托利拓扑。在本研究中,我主要与Taras Panov, Zhi Lu等人共同研究了拓扑与组合学的关系,为这一新兴学科的发展做出了努力。特别是,从2006年5月底开始,我在大阪城市大学组织了为期一周的环面拓扑国际会议。组织者是Megumi Harad(多伦多),Yael Karshon(多伦多)和Taras Panov(莫斯科),除了我。本次会议主要由21COE项目“构建聚焦于节的广角数学基础”支持,其他资源为Shigenori-Matsumoto、Taras Panov、Yoshitake Hashimoto的研究经费以及本人的研究经费。幸运的是,我们有140名参与者,其中一半是外国人。我们意识到很多人对这个新兴领域感兴趣。对于我自己的研究,我得到了如下的结果。(1) Gullemin-Zara研究了具有环面作用的流形拓扑与图论之间的关系。这是一个非常有趣的研究,因为它将拓扑学的思想引入了图的研究。在他们研究的启发下,我们引入了环面图的概念,并证明了环面图的等变上同调与交换代数中已经引入的简单偏序集的面环一致。论文发表在《数学学报》2007年第212期,第458-483页。(2)已知等变上同调包含了丰富的环流形几何,非常适合于环流形的研究。在本研究中,我证明了等变上同调完全区分环流形。(3)伯特塔是一个迭代的CP^1束,它提供了一个很好的环形流形族。我和塔拉斯·帕诺夫(Taras Panov)一起研究了那些博特塔的拓扑分类(论文已提交)。另外,我和Dong Youp Suh一起研究了高博特塔的拓扑分类这是博特塔的高维泛化。少

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Equivariant cohomology determines (quasi) toric manifolds
等变上同调确定(拟)复曲面流形
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Nagano;T. Aikou;K. Miyajima;T. Aikou;T. Aikou;K. Miyajima;愛甲 正(分担);愛甲 正;Mikiya Masda;Mikiya Masuda;Mikiya Masuda;Mikiya Masuda;Mikiya Masuda;Mikiya Masuda
  • 通讯作者:
    Mikiya Masuda
Torus graphs and simplicial posets
  • DOI:
    10.1016/j.aim.2006.10.011
  • 发表时间:
    2005-11
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    H. Maeda;M. Masuda;T. Panov
  • 通讯作者:
    H. Maeda;M. Masuda;T. Panov
h-vectors of Gorenstein* simplicial posets
Gorenstein* 单纯偏序集的 h 向量
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Masuda
  • 通讯作者:
    M.Masuda
New infinite series of Einstein metrics on sphere bundles from Ads black holes
来自 Ads 黑洞的球束的新无限系列爱因斯坦度量
On the cohomology of torus manifolds
  • DOI:
    10.18910/12823
  • 发表时间:
    2003-06
  • 期刊:
  • 影响因子:
    0.4
  • 作者:
    M. Masuda;T. Panov
  • 通讯作者:
    M. Masuda;T. Panov
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASUDA Mikiya其他文献

MASUDA Mikiya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASUDA Mikiya', 18)}}的其他基金

Development of toric topology
环面拓扑的发展
  • 批准号:
    22540094
  • 财政年份:
    2010
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Overall study of topology
拓扑学整体研究
  • 批准号:
    19204007
  • 财政年份:
    2007
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Construction of the topological toric theory
拓扑环面理论的构建
  • 批准号:
    15540090
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of the topological toric theory
拓扑环面理论的构建
  • 批准号:
    13640087
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological research of the theory of toric varieties
环曲面簇理论的拓扑研究
  • 批准号:
    11640091
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Orbifold Landau-Ginzburg镜像对称
  • 批准号:
    11901597
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
3-正则图的核理论及其应用
  • 批准号:
    11801522
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Fan-miR73靶向作用ABI5转录因子调控草莓果实成熟的分子机制
  • 批准号:
    31772366
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
s-fan 可分组设计及其应用
  • 批准号:
    U1304105
  • 批准年份:
    2013
  • 资助金额:
    30.0 万元
  • 项目类别:
    联合基金项目
3平衡设计及其应用
  • 批准号:
    10526032
  • 批准年份:
    2005
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

OPEN FAN VALIDATION FOR CARBON-FREE AIRCRAFTS (PANDORA)
无碳飞机的开放式风扇验证 (PANDORA)
  • 批准号:
    10061886
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    EU-Funded
HyFAN - Hydrogen Powered Electric Fan
HyFAN - 氢动力电风扇
  • 批准号:
    10062098
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Collaborative R&D
An innovative direct-to-fan marketing platform for musicians, enabling them to connect with their fanbases and generate up to 50% additional income
%20创新%20直接面向粉丝%20营销%20平台%20为%20音乐家,%20使%20他们%20与%20连接%20与%20他们的%20粉丝群%20和%20产生%20up%20到%2050%%20额外%20收入
  • 批准号:
    10071480
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Collaborative R&D
A Comprehensive Study of Noh and Kyogen Fan Designs in the Early Modern Period
近代早期能剧和狂言扇子设计的综合研究
  • 批准号:
    23K00287
  • 财政年份:
    2023
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alternate Passage Divergence of Aeroengine Fan Blades
航空发动机风扇叶片的交替通道发散度
  • 批准号:
    2844586
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Studentship
Deepening representation theory of orders by tilting theory
利用倾斜理论深化阶次表示理论
  • 批准号:
    22H01113
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The impact of sudden high turbidity water on the groundwater environment of an alluvial fan
突发高浊水对冲积扇地下水环境的影响
  • 批准号:
    22H02461
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
University of Sheffield (The) and Fan Systems Group Limited KTP 22_23 R1
谢菲尔德大学 (The) 和 Fan Systems Group Limited KTP 22_23 R1
  • 批准号:
    10033313
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Knowledge Transfer Partnership
Factors limiting marine connectivity at a species' range edge - the case of the pink sea fan, Eunicella verrucosa
限制物种分布范围边缘海洋连通性的因素——以粉红海扇 Eunicella verrucosa 为例
  • 批准号:
    2784014
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Studentship
A Data-Driven Multi-Fidelity Framework for Enhanced Flow Prediction Around Propeller and Fan Tips
数据驱动的多保真度框架,用于增强螺旋桨和风扇尖端的流量预测
  • 批准号:
    2767103
  • 财政年份:
    2022
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了