Construction of the topological toric theory

拓扑环面理论的构建

基本信息

  • 批准号:
    13640087
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

We developed the theory of toric varieties from the topological viewpoint. In these several years I worked with Professor Akio Hattori and found that geometrical properies of a torus manifold can be described in terms of a combinatorial object called a multi-fan. In particular, we found a neat formula describing the elliptic genus of a torus manifold in terms of the multi-fan associated with the torus manifold, and obtained a vanishing theorem saying that the level N elliptic genus of a torus manifold vanishes if the 1st Chern class of the manifold is divisible by N. As a corollary of this vanishing theorem, we obtained a result that if the 1st Chern class of a complete toric variety M of complex dimension n is divisible by N, then N must be less than or equal to n+1, and in case N=n+l, M is isomorphic to the complex protective space. This is a toric version of the famous Kobayashi-Ochiai or Mori's theorem.I invited Taras Panov from Moscow State University for a month and studied the equivariant cohomology of a torus manifold M and the cohomology of its orbit space. As a result, it turned out that when the cohomology ring of M is generated in degree two, the equivariant cohomology of M is a Stanley-Reisner ring and the orbit space of M has the same form as a convex polytope from a cohomological point of view. We also studied the case where M has vanishing odd degree cohomology. It turns out that this case is obtained by blowing down the previous case. Interestingly, the equivariant cohomology of M in this case provides a generalization of the Stanley-Reisner ring. The ring like this was already introduced by Stanley about ten years ago but we may think of our results as giving a geometrical meaning of the ring. Along this line, I proved a conjecture by Stanley about the h-vector of a Gorenstein* simplicial poset. The proof is purely algebraic but the idea stems from topology and this shows a close connection between combinatorics, commutative algebra and topology.
我们从拓扑的观点发展了复曲面簇的理论。在这几年里,我和服部昭夫教授一起工作,发现环面流形的几何性质可以用一个叫做多扇的组合对象来描述。特别地,我们发现了一个简洁的公式,用与环面流形相关联的多重扇来描述环面流形的椭圆亏格,并得到了一个消失定理,即如果环面流形的第一陈类可被N整除,则环面流形的N级椭圆亏格为零.作为这个消失定理的推论,我们得到了一个结果:如果复维数为n的完备复曲面簇M的第一陈类能被N整除,则N必小于或等于n+1,并且当N=n+1时,M同构于复保护空间.这是著名的Kobayashi-Ochiai定理或Mori定理的环面版本。我邀请了莫斯科州立大学的Taras Panov用了一个月的时间研究了环面流形M的等变上同调及其轨道空间的上同调。结果表明,当M的上同调环是二次生成的时,M的等变上同调环是Stanley-Reisner环,并且M的轨道空间从上同调的观点看具有与凸多胞形相同的形式.我们还研究了M的奇次上同调为零的情形。原来,这个案例是由前一个案例向下吹得到的。有趣的是,在这种情况下M的等变上同调提供了斯坦利-莱斯纳环的推广。像这样的环已经介绍了斯坦利约十年前,但我们可能会认为我们的结果,使几何意义的环。沿着这条线,我证明了斯坦利关于Gorenstein* 单纯偏序集的h-向量的一个猜想。证明是纯粹的代数,但想法源于拓扑结构,这表明了密切联系之间的组合,交换代数和拓扑结构。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mikiya Masuda: "Equivariant algebraic vector bundles over representation -a survey"K-monograph of Mathematics. 7巻. 25-36 (2002)
Mikiya Masuda:“等变代数向量束的表示 - 一项调查”K-数学专着卷 7. 25-36 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jin Hwan Cho: "Classification of equivariant complex vector bundles over a circle"Journal of Mathematics of Kyoto University. 41巻. 517-534 (2001)
Jin Hwan Cho:“圆上等变复向量束的分类”京都大学数学杂志第41卷。517-534(2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikiya Masuda: "Equivariant algebraic vector bundles over representations -a survey"K-monograph of Mathematics. 7巻. 25-36 (2002)
Mikiya Masuda:“表示上的等变代数向量束 - 一项调查”K-数学专着卷 7. 25-36 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Akio Hattori: "Theory of multi-fans"Osaka Journal of Mathematics. 40巻. 1-68 (2003)
服部昭夫:《多扇论》大阪数学杂志第40卷1-68(2003年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Mikiya Masuda: "Equivariant algebraic vector bundles over a representaiton - a suevey"K-monograph of Math. vol 7. 25-36 (2002)
Mikiya Masuda:“等变代数向量束在表示上 - 一个 suevey”K 数学专着。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MASUDA Mikiya其他文献

MASUDA Mikiya的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MASUDA Mikiya', 18)}}的其他基金

Development of toric topology
环面拓扑的发展
  • 批准号:
    22540094
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Overall study of topology
拓扑学整体研究
  • 批准号:
    19204007
  • 财政年份:
    2007
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Topological toric theory and combinatorics
拓扑环面理论和组合数学
  • 批准号:
    17540092
  • 财政年份:
    2005
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Construction of the topological toric theory
拓扑环面理论的构建
  • 批准号:
    15540090
  • 财政年份:
    2003
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological research of the theory of toric varieties
环曲面簇理论的拓扑研究
  • 批准号:
    11640091
  • 财政年份:
    1999
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

Orbifold Landau-Ginzburg镜像对称
  • 批准号:
    11901597
  • 批准年份:
    2019
  • 资助金额:
    28.0 万元
  • 项目类别:
    青年科学基金项目
3-正则图的核理论及其应用
  • 批准号:
    11801522
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
Fan-miR73靶向作用ABI5转录因子调控草莓果实成熟的分子机制
  • 批准号:
    31772366
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
s-fan 可分组设计及其应用
  • 批准号:
    U1304105
  • 批准年份:
    2013
  • 资助金额:
    30.0 万元
  • 项目类别:
    联合基金项目
3平衡设计及其应用
  • 批准号:
    10526032
  • 批准年份:
    2005
  • 资助金额:
    3.0 万元
  • 项目类别:
    数学天元基金项目

相似海外基金

OPEN FAN VALIDATION FOR CARBON-FREE AIRCRAFTS (PANDORA)
无碳飞机的开放式风扇验证 (PANDORA)
  • 批准号:
    10061886
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    EU-Funded
HyFAN - Hydrogen Powered Electric Fan
HyFAN - 氢动力电风扇
  • 批准号:
    10062098
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative R&D
An innovative direct-to-fan marketing platform for musicians, enabling them to connect with their fanbases and generate up to 50% additional income
%20创新%20直接面向粉丝%20营销%20平台%20为%20音乐家,%20使%20他们%20与%20连接%20与%20他们的%20粉丝群%20和%20产生%20up%20到%2050%%20额外%20收入
  • 批准号:
    10071480
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Collaborative R&D
A Comprehensive Study of Noh and Kyogen Fan Designs in the Early Modern Period
近代早期能剧和狂言扇子设计的综合研究
  • 批准号:
    23K00287
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Alternate Passage Divergence of Aeroengine Fan Blades
航空发动机风扇叶片的交替通道发散度
  • 批准号:
    2844586
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
The impact of sudden high turbidity water on the groundwater environment of an alluvial fan
突发高浊水对冲积扇地下水环境的影响
  • 批准号:
    22H02461
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deepening representation theory of orders by tilting theory
利用倾斜理论深化阶次表示理论
  • 批准号:
    22H01113
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
University of Sheffield (The) and Fan Systems Group Limited KTP 22_23 R1
谢菲尔德大学 (The) 和 Fan Systems Group Limited KTP 22_23 R1
  • 批准号:
    10033313
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Knowledge Transfer Partnership
Factors limiting marine connectivity at a species' range edge - the case of the pink sea fan, Eunicella verrucosa
限制物种分布范围边缘海洋连通性的因素——以粉红海扇 Eunicella verrucosa 为例
  • 批准号:
    2784014
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
A Data-Driven Multi-Fidelity Framework for Enhanced Flow Prediction Around Propeller and Fan Tips
数据驱动的多保真度框架,用于增强螺旋桨和风扇尖端的流量预测
  • 批准号:
    2767103
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了