Quantification of central input factors for the determination of planning lead times in shop floor production

量化中心输入因素,以确定车间生产的计划提前期

基本信息

项目摘要

The determination of planned order lead times is still an unsolved issue in companies with complex production structures. As a result, companies often have problems delivering to customers on time. In addition to insufficient adherence to schedules due to late work processes, premature work processes lead to avoidable inventory. Precise planned order lead times are required to confirm a feasible deadline to the customer, to plan production capacities and to better organize procurement.In practice, however, rigid methods for determining the planned order lead times are often used, which do not react sufficiently to changing environmental influences. Possible environmental influences are e.g. short term sick calls or fluctuations of the load of production. Classical approaches for the determination of planned order lead times include, in particular, methods based on estimates, historical values, logistic models and simulation. These methods take into account different information and data for the determination. The limitations of most of the classical methods are especially in too simplified assumptions, which makes a high planning quality difficult. Approaches such as simulation counteract these limitations, but lead to a very high application effort. Especially in complex production environments like shop floor production (e.g. tool and special machine manufacturing), precise planning is not implemented in practice due to scattering work content and a fluctuating number of operations per job. In addition, for contract manufacturers, insufficient determination of the planned lead times has a direct impact on the adherence to schedules to customers. The central input factors influencing the order lead times in a shop floor production are not yet systematically investigated.Therefore, the aim of this project is to identify and quantify central input factors for the determination of planned order lead times in shop floor production from company data of six contract manufacturers. Machine learning (ML) will be used in the project to identify patterns in data and to derive generalized assumptions. The insights into the central cause-effect relationships will help the investigated companies to more precisely forecast planned order lead times and thus improve their ability to meet their customers' deadlines.
在生产结构复杂的企业中,计划订单提前期的确定仍然是一个悬而未决的问题。因此,公司经常难以按时向客户交付产品。除了由于工作过程延迟而未充分遵守时间表外,过早的工作过程还会导致可避免的库存。为了给客户确定一个可行的最后期限,计划生产能力和更好地组织采购,需要精确的计划订单提前期。然而,在实践中,经常使用僵化的方法来确定计划订单提前期,这种方法不能对变化的环境影响做出足够的反应。可能的环境影响例如是短期的病假呼叫或生产负荷的波动。确定计划订单提前期的经典方法尤其包括基于估计、历史值、逻辑模型和模拟的方法。这些方法考虑了用于确定的不同信息和数据。大多数经典方法的局限性尤其是假设过于简单化,这使得高质量的规划难以实现。诸如模拟之类的方法抵消了这些限制,但会导致非常高的应用程序工作量。特别是在复杂的生产环境中,如车间生产(如工具和专用机械制造),由于工作内容分散和每个作业的操作数量波动,在实践中没有实施精确的计划。此外,对于合同制造商来说,对计划交货期的确定不充分直接影响到对客户时间表的遵守。影响车间生产中订单提前期的中心输入因素尚未得到系统的研究,因此,本项目的目的是从六家合同制造商的公司数据中识别和量化中心输入因素,以确定车间生产中的计划订单提前期。该项目将使用机器学习(ML)来识别数据中的模式,并得出普遍的假设。对核心因果关系的洞察将有助于被调查公司更准确地预测计划订单提前期,从而提高他们满足客户最后期限的能力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Matthias Schmidt其他文献

Professor Dr.-Ing. Matthias Schmidt的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Matthias Schmidt', 18)}}的其他基金

Development of a model for the quantitative description and calculation of logistic cause effect relationships in different assembly organization forms
不同装配组织形式下物流因果关系定量描述与计算模型的建立
  • 批准号:
    286185637
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Integrative logistics model for linking planning and control tasks with logistical target and control variables of the company's internal supply chain
将计划和控制任务与公司内部供应链的物流目标和控制变量联系起来的综合物流模型
  • 批准号:
    258099568
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

胞质分裂期RhoA的时空调控分子机制研究
  • 批准号:
    31771500
  • 批准年份:
    2017
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
GYF结构域蛋白SAO-1对调控RhoA分子通路的机理研究
  • 批准号:
    31671409
  • 批准年份:
    2016
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
基于动物运动神经系统的蛇形机器人控制方法研究
  • 批准号:
    60875083
  • 批准年份:
    2008
  • 资助金额:
    32.0 万元
  • 项目类别:
    面上项目
有限p-群若干问题及其应用
  • 批准号:
    10671114
  • 批准年份:
    2006
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目
N-体问题的中心构型及动力系统的分支理论
  • 批准号:
    10601071
  • 批准年份:
    2006
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The significance of nominally non-responsive neural dynamics in auditory perception and behavior
名义上无反应的神经动力学在听觉感知和行为中的意义
  • 批准号:
    10677342
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
MECHANISMS OF VISCERAL PAIN DRIVEN BY SMALL INTESTINAL MICROBIOTA
小肠微生物驱动内脏疼痛的机制
  • 批准号:
    10836298
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Neural Mechanisms for Flexible Vocal Communication
灵活语音交流的神经机制
  • 批准号:
    10658308
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
The trigeminal nociceptive-pain pathway in pediatric mTBI: peripheral and central contributions to photophobia
儿科 mTBI 中的三叉神经伤害性疼痛通路:畏光的外周和中枢贡献
  • 批准号:
    10656665
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of a newly identified group of neurons regulating sleep and feeding behaviors.
对一组新发现的调节睡眠和进食行为的神经元的研究。
  • 批准号:
    10659498
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Traumatic Events and Injury: Etiologic Mechanisms for Temporomandibular Disorders
创伤事件和损伤:颞下颌疾病的病因机制
  • 批准号:
    10829075
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
High resolution interrogation of the insula in mechanisms of chronic pain
慢性疼痛机制中岛叶的高分辨率询问
  • 批准号:
    10575673
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Unraveling the role of satellite glial cells in sensory hypersensitivity in Fragile X syndrome
揭示卫星胶质细胞在脆性 X 综合征感觉超敏反应中的作用
  • 批准号:
    10752180
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Characterizing Lower Extremity Neurophysiological Responses to Sensory Augmentation after Stroke
中风后下肢对感觉增强的神经生理反应特征
  • 批准号:
    10829133
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Central auditory pathways for integrating auditory input with head position during active sound localization in mice
在小鼠主动声音定位过程中将听觉输入与头部位置整合的中枢听觉通路
  • 批准号:
    10652787
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了