Applications of Frobenius map to Commutative Ring Theory and Algebraic Geometry
Frobenius映射在交换环理论和代数几何中的应用
基本信息
- 批准号:07454010
- 负责人:
- 金额:$ 3.2万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:1995
- 资助国家:日本
- 起止时间:1995 至 1997
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1 Characterization of Singularities in Characteristic 0 via Frobenius endomorphism. We found that log-terminal singularity and F-regular rings are equivalent notions in the case the ring is Q-Gorenstein. The same is true for rational singularities and F-rational rings.2 By definig F-terminal rings, the terminal singularities are characterized in 3-dimensional case. F-terminal and Q-Gorenstein imply terminal singularity in any dimension. But in dimension 4, unfortunately, there is a counterexample to the converse and F-rational ring is characterized by the property that its general hyperplane section is F-rational in Gorenstein case.3 The characterization of regular local rings by Hilbert-Kunz multiplicity=1.Namely, an unmixed local ring of characteristic p is regular if and only if its H-K multiplicity is 1.Also we succeeded to classify the 2-dimensional rings with Hibert-Kunz multiplicity less than 9/4.
1通过Frobenius自同态刻画特征0中的奇点。我们发现当环是Q-Gorenstein环时,对数-终端奇点与F-正则环是等价的。有理奇点和F-有理环也是如此。2通过定义F-终结环,刻画了三维情形下的终结奇点。F-终端和Q-Gorenstein意味着在任何维度上的终端奇异性。但在4维中,不幸的是,有一个反例的匡威和F-有理环的特点是它的一般超平面截面是F-有理的Gorenstein情况下的性质。3正则局部环的Hilbert-Kunz重数= 1的特征。即,特征为p的非混合局部环是正则的当且仅当它的H-K重数为1。Hibert-Kunz重数小于9/4的一维环。
项目成果
期刊论文数量(12)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Makoto MORI: "Fredholm Matrix and Zeta Functions for 1-dimensional Mappings" Proceedings of Algorithms, Fractals and Dynamics in Kyoto. 161-168 (1995)
Makoto MORI:“一维映射的 Fredholm 矩阵和 Zeta 函数”京都算法、分形和动力学论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Masahiko SUZUKI: "The blow analytically constant stratum of real analytic singularities" "Real analytic and algebraic singularities" (T.Fukuda, T.Fukui, S.Izumiya and S.Koike (eds.). 64-76 (1997)
Masahiko SUZUKI:“实分析奇点的分析恒定层”“实分析和代数奇点”(T.Fukuda、T.Fukui、S.Izumiya 和 S.Koike(编辑)。64-76 (1997)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
N. Hara and K. Watanabe: "The injecturity of Frobenius acting on cohomology and local cohomology modules" Manuscripta Math.90. 301-315 (1996)
N. Hara 和 K. Watanabe:“Frobenius 作用于上同调和局部上同调模的注入性”Manuscripta Math.90。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
渡辺敬一: "“悪い"特異点のFrobenius写像による特徴付け" 第18回可換環論シンポジウム報告集. 122-126 (1996)
Keiichi Watanabe:“通过 Frobenius 映射表征‘坏’奇点”第 18 届交换代数理论研讨会报告 122-126 (1996)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WATANABE Keiichi其他文献
WATANABE Keiichi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WATANABE Keiichi', 18)}}的其他基金
A Study on the Maintaining Community Livelihoods in a Low-vegetation Environment: A Case Study of the Lake Biwa Region in the Early-modern to Modern Times.
低植被环境下维持社区生计的研究——以近代至近代琵琶湖地区为例。
- 批准号:
18K01184 - 财政年份:2018
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Revealing the History of Management and Rituals of Sajo-jo Documents in Miyaza Archives: From the Viewpoint of Material Culture
揭示宫座档案馆四条上文书的管理与礼仪史:从物质文化的角度
- 批准号:
15K16907 - 财政年份:2015
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Commutative Ring Theory of Singularities
奇点交换环理论
- 批准号:
26400053 - 财政年份:2014
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Reconsideration on the Public-service Nature of Japanese Railway Businesses in the Prewar Period
战前日本铁路事业公共服务性质的再思考
- 批准号:
22530348 - 财政年份:2010
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A study on historical types and functions of long-term archives in "Miyaza" systems
“宫座”系统中长期档案的历史类型与功能研究
- 批准号:
21720328 - 财政年份:2009
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Singurality Theory and Frobenius Morphism
奇点理论和弗罗贝尼乌斯态射
- 批准号:
17540043 - 财政年份:2005
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Economic Policy of Japanese Railway Industry in the Inter-War Period
两次世界大战期间日本铁路工业的经济政策
- 批准号:
16530231 - 财政年份:2004
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structural evolution and molecular mechanism of cold-active enzymes from Antarctic psychrophiles
南极嗜冷菌冷活性酶的结构演化及分子机制
- 批准号:
15380074 - 财政年份:2003
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Commutative ring theory and singularity theory
交换环理论和奇点理论
- 批准号:
13440015 - 财政年份:2001
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characteristic p method in singularity theory
奇点理论中的特征p法
- 批准号:
10640042 - 财政年份:1998
- 资助金额:
$ 3.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
2139613 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
A Unified Perspective on Singularities in Commutative Algebra and Algebraic Geometry
交换代数和代数几何奇异性的统一视角
- 批准号:
2101800 - 财政年份:2021
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952399 - 财政年份:2020
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952522 - 财政年份:2020
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952531 - 财政年份:2020
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1951376 - 财政年份:2020
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Algebraic Geometry and Singularities in Positive and Mixed Characteristic
FRG:合作研究:代数几何和正特征和混合特征中的奇点
- 批准号:
1952366 - 财政年份:2020
- 资助金额:
$ 3.2万 - 项目类别:
Continuing Grant
Algebraic geometry - singularities, jet schemes, and multiplier ideals
代数几何 - 奇点、喷射方案和乘数理想
- 批准号:
347440-2007 - 财政年份:2007
- 资助金额:
$ 3.2万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Singularities in commutative algebra and algebraic geometry
交换代数和代数几何中的奇点
- 批准号:
105583-1997 - 财政年份:1999
- 资助金额:
$ 3.2万 - 项目类别:
Discovery Grants Program - Individual