Analysis und Geometrie von Differentialoperatoren und stochastischen Prozessen auf unendlichdimensionalen Räumen

无限维空间上微分算子和随机过程的分析和几何

基本信息

项目摘要

Das Verhalten von stochastischen Systemen mit unendlich vielen Freiheitsgraden [wie z.B. unendliche wechselwirkende Teilchensysteme, deren Dynamik durch eine stochastische (partielle) Differentialgleichung gegeben ist] läßt sich im Markovschen Fall analytisch über den infinitesimalen Generator ihrer Übergangswahrscheinlichkeiten beschreiben. Dieser Generator ist ein (Pseudo-)Differentialoperator der Ordnung (höchstens) 2 in unendlich vielen Variablen. Bei Systemen mit sehr singulären Wechselwirkungen sind entsprechend die Koeffizientenfunktionen des Operators singulär. Wie in endlichen Dimensionen ist zu dessen Analyse die Entwicklung einer geeigneten LP-Theorie in unendlich vielen Dimensionen notwendig, d.h.: ein unendlichdimensionales Analogon der klassischen Sobolevraum-Theorie. Da auf unendlichdimensionalen Räumen kein Lebesguemaß existiert, ist es zunächst erforderlich, ein dem Operator und der jeweiligen zugrunde liegenden Geometrie angepaßtes Referenzmaß zu konstruieren. Typischerweise sind (sub)invariante Maße des Operators [d.h.: verallgemeinerte (super)harmonische Funktionen des dualen Operators] dazu geeignet. Anschließend kann der Operator in den zugehörigen LP-Sobolevräumen genau analysiert werden, und es können Rückschlüsse auf spezielle Eigenschaften des zu untersuchenden stochastischen Systems gezogen werden. Im einzelnen sollen u.a. folgende Themen dazu bearbeitet werden: - A priori Abschätzungen, Existenz, Eindeutigkeit und Regularität (sub-)invarianter Maße µ - Existenz und Eindeutigkeit einer Erweiterung des Operators, der eine Halbgruppe auf LP(µ) erzeugt, die die verlangten Übergangswahrscheinlichkeiten beschreibt - Existenz und Eindeutigkeit von Lösungen der zugrunde liegenden stochastischen (partiellen) Differentialgleichung - Untersuchung von Spektraleigenschaften des Operators aufLP(µ), insbesondere hinsichtlich der Asymptotik der Langzeitentwicklung des stochastischen Systems - Fallstudien/Anwendungen: stochastische Burgers und NavierStokes Gleichungen, stochastische Quantisierung, singuläre Diffusionen auf Rd, Klassen maßwertiger Diffusionen, Diffusionsoperatoren auf Pfad- und Schleifenräumen über Riemannschen Mannigfaltigkeiten.
随机系统的可靠性有无限的自由度[如z.B. Unendliche wechselwirkende Teilchensysteme,deren Dynamik durch eine stochastische(partielle)Differentialleichung gegeben ist] läßt sich im Markovschen Fall analytisch über den infinitesimalen Generator ihrer Übergangswahrscheinlichkeiten beschreiben。Dieser生成器是一个在无穷多个变量中的有序(höchstens)2的(伪)微分算子。Bei Systemen mit sehr singulären Wechselkungen sind entsprechend die Koeffizientenfunktionen des Operators singulär. Wie in endlichen extensionen ist zu dessen分析发展中的一个基本LP理论,在unendlich vielen extensionen notwendig,d.h.:经典Sobolevraum-Theorie的无限维类比。Da auf unendlichdimensionalen Räumen kein Lebesguemaesthettiert,is zunächst erforderlich,ein dem Operator und der jeweiligen zurunde liegenden Geometrie angepaßtes Referencezmastrizzu konstruieren. Typischerweise sind(sub)invariante Maße des Operators [d.h.:二元运算符的超调和函数[verallgemeinerte(super)harmonische Funktionen des dualen Operators] dazu geignet.在一般韦尔登系统中,线性规划算子的选取是一般分析的一种方法,而在一般随机韦尔登系统中,则是一种特殊的本征函数。我是唯一一个在美国定居的人。folgende Themen dazu bearbeitet韦尔登:- 先验Abschätzungen,abstitenz,Eindeutigkeit und Regularität(sub-)invarianter Maße µ -abstitenz und Eindeutigkeit einer Erweiterung des Operators,der eine Halbgruppe auf LP(µ)erzeugt,这些由随机产生的随机场所产生的非线性运动被认为是一种非线性运动,并被认为是一种非线性运动(partiellen)Differentialleichung- Untersuchung von Spektraleigenschaften des Operators aufLP(μ),insbesondere hinsichtlich der Asymptotik der Langzeitentwicklung des stochastischen Systems - Fallstudien/Anwendungen:随机Burgers und NavierStokes Gleichungen,随机量化,singuläre Diffusionen auf Rd,Klassen maßwertiger Diffusionen,Diffusionsoperatoren auf Pfad- und Schleifenräumen über Riemannschen Mannigfaltigkeiten.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Michael Röckner其他文献

Professor Dr. Michael Röckner的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Michael Röckner', 18)}}的其他基金

Analytic aspects of optimal transportation
最佳运输的分析方面
  • 批准号:
    316972354
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Zentralprojekt
中央项目
  • 批准号:
    5277796
  • 财政年份:
    2000
  • 资助金额:
    --
  • 项目类别:
    Research Units
Analyse von Gibbsmaßen via partieller Integration und Quasi-Invarianz
通过部分积分和拟不变性分析吉布斯测度
  • 批准号:
    5178308
  • 财政年份:
    1999
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Unendlich-dimensionale wechselwirkende stochastische Systeme und stochastische partielle Differentialgleichungen
无限维相互作用随机系统和随机偏微分方程
  • 批准号:
    5376513
  • 财政年份:
    1997
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Zentralprojekt: Symmetrie, Geometrie und Arithmetik
中心项目:对称、几何和算术
  • 批准号:
    236747933
  • 财政年份:
    2013
  • 资助金额:
    --
  • 项目类别:
    Research Units
Torische und tropische Methoden in der Algebraischen Geometrie
代数几何中的环面和热带方法
  • 批准号:
    227923852
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Grants
String-Geometrie: höhere differentialgeometrische Methoden zur Untersuchung von klassischen, differential-geometrischen und topologischen Aspekten von String-Mannigfaltigkeiten
弦几何:用于研究弦流形的经典、微分几何和拓扑方面的高级微分几何方法
  • 批准号:
    217926572
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Scientific Networks
Algorithmische Geometrie: Realistische Eingabemodelle, Parametrisierte Komplexität und Formapproximation
算法几何:现实输入模型、参数化复杂性和形状近似
  • 批准号:
    162287687
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Heisenberg Fellowships
Janus-Nanopartikel in begrenzter Geometrie: Struktur und Phasenverhalten
受限几何中的 Janus 纳米颗粒:结构和相行为
  • 批准号:
    190598962
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Topologie, Geometrie und Analysis dreidimensionaler Fraktale
三维分形的拓扑、几何和分析
  • 批准号:
    181145837
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
3D-FaserForm - Integrierte 3D-Geometrie- und -Texturmessung für die FVK-Produktion
3D-FaserForm - 用于 FRP 生产的集成 3D 几何和纹理测量
  • 批准号:
    152202997
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Simulation und Visualisierung der Montage von Bauteilen mit nichtidealer, toleranzbehafteter Geometrie
具有非理想的、与公差相关的几何形状的部件的装配仿真和可视化
  • 批准号:
    62789073
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Glas- und Polymerdynamik in einschränkender Geometrie studiert mit Hilfe verschiedener Methoden der kernmagnetischen Resonanzspektroskopie
使用核磁共振波谱的各种方法研究限制几何中的玻璃和聚合物动力学
  • 批准号:
    81569159
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Geometrie und Kombinatorik von Toruswirkungen auf algebraischen Varietäten
代数簇上环面作用的几何和组合
  • 批准号:
    103953965
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了