Brownian Motion and Nonlinear Boundary Value Problems

布朗运动和非线性边值问题

基本信息

  • 批准号:
    10440050
  • 负责人:
  • 金额:
    $ 5.31万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    1998
  • 资助国家:
    日本
  • 起止时间:
    1998 至 1999
  • 项目状态:
    已结题

项目摘要

Our results may be summarized as follows :1. First we studied from the viewpoint of functional analysis the problem of construction of Markov processes with boundary conditions in probability theory. Our approach is distinguished by the extensive use of the ideas and techniques characteristic of the recent developments in the theory of partial differential equations. We constructed a Feller semigroup corresponding to such a diffusion phenomenon that a Markovian particle moves both by jumps and continuously in the state space until it dies at the time when it reaches the set where the particle is definitely absorbed.2. Secondly we studied existence and uniqueness problems of positive solutions of diffusive logistic equations with indefinite weights which model population dynamics in environments with strong spatial heterogeneity. We proved that the most favorable situations will occur if there is a relatively large favorable region (with good resources and without crowding effects) loca … More ted some distance away from the boundary of the environment. Moreover we discuss the stability properties for positive steady states.3. Thirdly we studied semilinear elliptic boundary value problems arising in chemical reactor theory which obey the simple Arrhenius rate law and Newtonian cooling. We proved that ignition and extinction phenomena occur in the stable steady temperature profile at some critical values of a dimensionless heat evolution rate.4. Finally we gived an analytic proof of an index formula for the relative de Rham cohomology groups which may be considered as a generalization of the celebrated Hodge--Kodaira theory for the absolute de Rham cohomology groups. In deriving our index formula, the theory of harmonic forms satisfying an interior boundary condition plays a fundamental role. Our approach has a great advantage of intuitive interpretation of the index formula in terms of Brownian motion from the point of view of probability theory. Our result may be stated as follows : Brownian motion describes the topology of a compact Riemannian manifold through its Euler--Poincare characteristic. Less
我们的研究结果可以总结如下:1。首先从泛函分析的角度研究了概率论中具有边界条件的马尔可夫过程的构造问题。我们的方法的特点是广泛使用了偏微分方程理论中最近发展的思想和技术。我们构造了一个Feller半群,对应于这样一种扩散现象,即一个马尔可夫粒子在状态空间中既跳跃又连续地运动,直到它到达粒子确定被吸收的集合时死亡。其次,研究了具有强空间异质性的种群动态模型的不定权扩散logistic方程正解的存在唯一性问题。我们证明,如果在离环境边界一定距离的地方有一个相对较大的有利区域(资源良好,没有拥挤效应),就会出现最有利的情况。此外,我们还讨论了正稳态的稳定性性质。第三,研究了化学反应器理论中的半线性椭圆边值问题,该问题遵循简单的阿伦尼乌斯速率定律和牛顿冷却理论。我们证明了在无量纲热演化率的某些临界值下,在稳定的稳定温度分布中会发生点火和熄灭现象。最后,我们给出了相对de Rham上同群的一个指标公式的解析证明,该指标公式可以看作是对著名的绝对de Rham上同群的Hodge—Kodaira理论的推广。在推导指标公式时,满足内边界条件的调和形式理论起着基本的作用。我们的方法有一个很大的优点,即从概率论的角度直观地解释布朗运动的指标公式。我们的结果可以表述如下:布朗运动通过紧致黎曼流形的欧拉—庞加莱特征来描述其拓扑结构。少

项目成果

期刊论文数量(51)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Izumi Kubo: "White noise analysis associated with sequences of numbers"Infinite Dimensional Analysis, Quantum Probability and Related topics. 2・3. 315-336 (1999)
久保泉:“与数字序列相关的白噪声分析”无限维分析,量子概率和相关主题 2・3(1999)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuaki TAIRA: "Feller Semigroups and degenerate elliptic operators I"Conferenze del Seminario di Matematica dell'Universita di Bari. No.274. (1999)
Kazuaki TAIRA:“费勒半群和简并椭圆算子 I”巴里大学数学研讨会会议。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Kazuaki Taira: "Stability in chemical reactor theory"Proceedings of the Conference on Evolution Equations and Their Applications in Physical and Life Sciences. (2000)
Kazuaki Taira:“化学反应器理论中的稳定性”演化方程及其在物理和生命科学中的应用会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Hiroyuki Takamura: "Remarks on the blow-up boundaries and rates for nonlinear wave eguations"Nonlinear Analysis. 33・2. 693-698 (1998)
Hiroyuki Takamura:“关于非线性波方程的爆炸边界和速率的评论”非线性分析 33・2。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Nariyuki Minami: "On the Poisson limit theorems of Sirai and Major"Communications in Mathematical Physics. (2000)
Nariyuki Minami:“论Sirai和Major的泊松极限定理”数学物理通讯。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAIRA Kazuaki其他文献

TAIRA Kazuaki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAIRA Kazuaki', 18)}}的其他基金

Study of nonlinear boundary value problems by topological methods
拓扑方法研究非线性边值问题
  • 批准号:
    19540162
  • 财政年份:
    2007
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Inverse problems in Mathematical Biology, Chemistry and Technology
数学生物学、化学和技术中的反问题
  • 批准号:
    16340031
  • 财政年份:
    2004
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Singular Integral Operators and Nonlinear Problems
奇异积分算子和非线性问题
  • 批准号:
    13440041
  • 财政年份:
    2001
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Mathematical analysis of the initial value boundary value problem of viscous flows with hyperbolic effects
具有双曲效应的粘性流初值边值问题的数学分析
  • 批准号:
    22K03374
  • 财政年份:
    2022
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generalization of Nearby cycles for D-modules and its application to boundary value problem
D-模邻近循环的推广及其在边值问题中的应用
  • 批准号:
    15K04908
  • 财政年份:
    2015
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Nonlinear Schroedinger systems with saturation effect and Willmore boundary value problem
具有饱和效应的非线性薛定谔系统和威尔莫尔边值问题
  • 批准号:
    257041468
  • 财政年份:
    2014
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Research Fellowships
New Boundary-Value Problem Techniques for Nonlinear Wave Problems
非线性波问题的新边值问题技术
  • 批准号:
    1008001
  • 财政年份:
    2010
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Standard Grant
A study of boundary value problem solution methods
边值问题求解方法的研究
  • 批准号:
    377937-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Boundary-value problem solving environment for pythNon
pythNon 的边界值问题求解环境
  • 批准号:
    367489-2008
  • 财政年份:
    2008
  • 资助金额:
    $ 5.31万
  • 项目类别:
    University Undergraduate Student Research Awards
The initial-boundary value problem for a system of nonlinear elastic waves
非线性弹性波系统的初边值问题
  • 批准号:
    16540199
  • 财政年份:
    2004
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
US-Germany Cooperative Research: On Some Fundamental Issues in the Initial Boundary Value Problem of GR
美德合作研究:GR初始边值问题的一些基本问题
  • 批准号:
    0307290
  • 财政年份:
    2003
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Standard Grant
Direct numerical solution to the inverse boundary-value problem of elliptic equations by using the adjoint variational method.
使用伴随变分法直接数值求解椭圆方程反边值问题。
  • 批准号:
    14540099
  • 财政年份:
    2002
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Perturbation of domain of diffusion processes with boundary conditions and its application to the boundary value problem
边界条件下扩散过程域的扰动及其在边值问题中的应用
  • 批准号:
    10640112
  • 财政年份:
    1998
  • 资助金额:
    $ 5.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了