The Haagerup subfactor, K-theory and conformal field theory
Haagerup 子因子、K 理论和共形场论
基本信息
- 批准号:EP/J003352/1
- 负责人:
- 金额:$ 6.1万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2012
- 资助国家:英国
- 起止时间:2012 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The theory of operator algebras was initiated by Murray and von Neumann as a tool for studying group representations and as a mathematical framework for quantum mechanics. Since then noncommutative operator algebras have become a powerful tool in the analysis of singular topological spaces and measure spaces (such as leaf spaces of foliations or orbit spaces of ergodic group actions) with links and applications to many areas of mathematical and theoretical physics, eg K theory, the Novikov conjecture, foliations, link and 3-manifold invariants, quantum groups, modular invariants, topological and conformal field theory, and D-branes. With the introduction by Connes of noncommutative geometry, and with it noncommutative models of space-time, entirely new avenues of research have opened up. Noncommutative tori, through their K theory, have been used to provide matrix models in quantum field theory. The subfactor theory of Jones led to connections with link and 3-manifold invariants, quantum groups, exactly solvable models in statistical mechanics, conformal quantum field theory and modular invariants. This programme actually links these two areas - utilising the realisation of the Verlinde ring by Freed-Hopkins-Teleman FHT as twisted equivariant K-theory, and the realisation by Wassermann et al of the Verlinde ring as endomorphisms or bimodules of loop group subfactors. Ed Witten predicted that a theme of 21st century mathematics will be mathematicians coming to terms with quantum field theory, which is the language physicists believe describes fundamental physics. The nontrivial quantum field theories which are the simplest and most symmetrical, and so are the most amenable to mathematical study, should be the so-called conformal field theories CFT in 2 space-time dimensions. These CFTs are themselves of direct interest in physics, most famously because their study is equivalent to that of perturbative string theory. Applying the Wightman axioms to CFT leads very directly to the definition of a vertex operator algebra VOA first formulated by Borcherds. A VOA can be regarded as a mathematically rigorous algebraic formulation of the most symmetric of the quantum field theories. All known CFTs are the results of straightforward constructions applied to standard examples. But the classification of subfactors leads to candidates for exotic CFTs. Part of our project is to explore these possibilities. Atiyah tells us that an n-dimensional topological field theory associates numbers to closed n-manifolds and vector spaces to closed n-1 dimensional manifolds. For n=3, the space associated to a torus comes with a ring structure - the Verlinde ring. Atiyah's definition can be extended, by attaching a linear category to closed n-2 dimensional manifolds; for n=3, the circle is associated to a modular tensor category capturing eg. the braid group and modular group representations. A natural framework for FHT's K-theoretic interpretation of the Verlinde ring is dimensional reduction, a standard way to go from an n-dimensional topological field theory to say an n-1 dimensional one (with more symmetry); applied to n=3 and the circle, it yields the Verlinde ring. Some analogue of all this should apply to any CFT, and exploring this is part of our proposal. FHT only consider a chiral half of the CFT; the two chiral halves splice together in nontrivial ways, and the resulting full CFT is very rich mathematically - see eg the work of Evans and collaborators for a braided subfactor approach, or eg Fuchs et al for categorical interpretation, of the full CFT. Much of our project is to fill this gap, and understand how FHT extends to the full CFT. In this sense we are trying to uncover the basic structure of the simplest nontrivial quantum field theories.This project sets out to explain and construct CFT's, including exotic models beyond finite and loop group data, using tools from subfactors, twisted K-theory an VOA's.
算符代数理论是由Murray和von Neumann首创的,作为研究群表示的工具和量子力学的数学框架。从那时起,非交换算子代数已经成为分析奇异拓扑空间和测度空间(如叶层的叶空间或遍历群作用的轨道空间)的有力工具,并与数学和理论物理的许多领域建立了联系并得到了应用,如K理论、Novikov猜想、叶层、链接和3-流形不变量、量子群、模不变量、拓扑场和共形场论以及D-膜。随着康纳斯引入非对易几何,以及随之而来的非对易时空模型,开辟了一条全新的研究途径。非对易环面通过他们的K理论被用来提供量子场论中的矩阵模型。琼斯的子因子理论导致了与链式和3-流形不变量、量子群、统计力学中的精确可解模型、共形量子场论和模不变量的联系。这个程序实际上将这两个领域联系在一起--利用Freed-Hopkins-Teleman Fht将Verlinde环实现为扭曲等变K理论,以及Wassermann等人将Verlinde环实现为循环群子因子的自同态或双模。Ed Witten预测,21世纪数学的一个主题将是数学家与量子场论达成协议,物理学家认为量子场论是描述基础物理的语言。最简单、最对称、最适合数学研究的非平凡量子场论应该是所谓的二维时空共形场论CFT。这些CFT本身在物理学中有直接的意义,最著名的是因为它们的研究等同于微扰弦理论。将Wightman公理应用于CFT,非常直接地引出了顶点算子代数VOA的定义,该定义首先由BorCherds提出。VOA可以被看作是最对称的量子场论的数学严谨的代数公式。所有已知的CFT都是应用于标准示例的直接构造的结果。但子因素的分类导致了奇异CFT的候选者。我们项目的一部分就是探索这些可能性。Atiyah告诉我们,n维拓扑场论将数与n维闭流形联系起来,将向量空间与n-1维闭流形联系起来。当n=3时,与环面相关的空间有一个环结构--Verlinde环。Atiyah的定义可以被扩展,通过将线性范畴附加到n-2维闭流形上;对于n=3,圆与模张量范畴相关联,例如。辫子群和模群表示。FHTK理论解释Verlinde环的一个自然框架是降维,这是从n维拓扑场理论到n-1维拓扑场理论(具有更多对称性)的标准方法;应用于n=3和圆,它产生Verlinde环。所有这些都应该适用于任何CFT,探索这一点是我们建议的一部分。FHT只考虑CFT的手性部分;两个手性部分以非平凡的方式拼接在一起,得到的完整CFT在数学上是非常丰富的-参见例如Evans和合作者的工作以获得辫子因子方法,或例如Fuchs等人的工作以获得完整CFT的分类解释。我们的项目很大程度上是为了填补这一空白,并了解FHT如何延伸到完整的CFT。在这个意义上,我们试图揭示最简单的非平凡量子场论的基本结构。这个项目开始解释和构建CFT,包括有限和环群数据之外的奇异模型,使用子因子、扭曲K理论和VOA的工具。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Near-group fusion categories and their doubles
- DOI:10.1016/j.aim.2013.12.014
- 发表时间:2012-08
- 期刊:
- 影响因子:0
- 作者:David E. Evans;T. Gannon
- 通讯作者:David E. Evans;T. Gannon
Non-unitary fusion categories and their doubles via endomorphisms
非酉融合类别及其通过自同态的双打
- DOI:10.1016/j.aim.2017.01.015
- 发表时间:2017
- 期刊:
- 影响因子:1.7
- 作者:Evans D
- 通讯作者:Evans D
Modular Invariants and Twisted Equivariant K-theory III: KK-theory
模不变量和扭曲等变 K 理论 III:KK 理论
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Evans DE
- 通讯作者:Evans DE
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Evans其他文献
State needed to infer data use compliance in distributed transport applications
国家需要推断分布式传输应用程序中的数据使用合规性
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
David Evans;D. Eyers - 通讯作者:
D. Eyers
Stealthy Backdoors as Compression Artifacts
作为压缩工件的隐形后门
- DOI:
10.1109/tifs.2022.3160359 - 发表时间:
2021-04 - 期刊:
- 影响因子:0
- 作者:
Yulong Tian;Fnu Suya;Fengyuan Xu;David Evans - 通讯作者:
David Evans
Discordant Harmonies and Turbulent Serenity: The Ecopoetic Rhythms of Nature’s — and Art’s — Resistance
不和谐的和谐与动荡的宁静:自然和艺术的抵抗的生态诗意节奏
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
David Evans - 通讯作者:
David Evans
Towards Differential Program Analysis
走向微分程序分析
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Joel Winstead;David Evans - 通讯作者:
David Evans
Do metrics derived from self-reported and clinician-reported pain drawings agree for individuals with chronic low back pain?
来自自我报告和临床医生报告的疼痛图的指标对于慢性腰痛患者是否一致?
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:2.3
- 作者:
M. Barbero;Matthew Piff;David Evans;Deborah Falla - 通讯作者:
Deborah Falla
David Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Evans', 18)}}的其他基金
Birmingham Nuclear Physics Consolidated Grant 2023
伯明翰核物理综合赠款 2023
- 批准号:
ST/Y00034X/1 - 财政年份:2024
- 资助金额:
$ 6.1万 - 项目类别:
Research Grant
Mechanistically understanding biomineralisation and ancient ocean chemistry changes to facilitate robust climate model validation
从机械角度理解生物矿化和古代海洋化学变化,以促进稳健的气候模型验证
- 批准号:
EP/Y034252/1 - 财政年份:2023
- 资助金额:
$ 6.1万 - 项目类别:
Research Grant
Birmingham Nuclear Physics Consolidated Grant 2020
伯明翰核物理综合补助金 2020
- 批准号:
ST/V001043/1 - 财政年份:2021
- 资助金额:
$ 6.1万 - 项目类别:
Research Grant
Collaborative Research: Paleomagnetism and Geochronology of Mafic Dikes in Morocco, Reconstructing West Africa in Proterozoic Supercontinents
合作研究:摩洛哥镁铁质岩脉的古地磁学和地质年代学,重建元古代超大陆中的西非
- 批准号:
1953549 - 财政年份:2020
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
CDS&E: Collaborative Research: Private Data Analytics, Synthesis, and Sharing for Large-Scale Multi-Modal Smart City Mobility Research
CDS
- 批准号:
2002985 - 财政年份:2020
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Collaborative Research: A Unified Framework for Optimal Public Debt Management
合作研究:最优公共债务管理的统一框架
- 批准号:
1918748 - 财政年份:2019
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Chronic bee paralysis virus: The epidemiology, evolution and mitigation of an emerging threat to honey bees.
慢性蜜蜂麻痹病毒:对蜜蜂的新威胁的流行病学、进化和缓解。
- 批准号:
BB/R00305X/1 - 财政年份:2018
- 资助金额:
$ 6.1万 - 项目类别:
Research Grant
SaTC: CORE: Frontier: Collaborative: End-to-End Trustworthiness of Machine-Learning Systems
SaTC:核心:前沿:协作:机器学习系统的端到端可信度
- 批准号:
1804603 - 财政年份:2018
- 资助金额:
$ 6.1万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: Multi-Party High-dimensional Machine Learning with Privacy
SaTC:核心:小型:具有隐私性的多方高维机器学习
- 批准号:
1717950 - 财政年份:2017
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
The search for the exotic : subfactors, conformal field theories and modular tensor categories
寻找奇异的东西:子因子、共形场论和模张量类别
- 批准号:
EP/N022432/1 - 财政年份:2016
- 资助金额:
$ 6.1万 - 项目类别:
Research Grant
相似海外基金
Quadratic fusion categories: A frontier in subfactor theory
二次融合类别:子因子理论的前沿
- 批准号:
DP170103265 - 财政年份:2017
- 资助金额:
$ 6.1万 - 项目类别:
Discovery Projects
Subfactor Theory in Mathematics and Physics Conference 2014
2014年数学物理会议子因子理论
- 批准号:
1400275 - 财政年份:2014
- 资助金额:
$ 6.1万 - 项目类别:
Standard Grant
Research on topological quantum field theories by operator algebras
用算子代数研究拓扑量子场论
- 批准号:
18740037 - 财政年份:2006
- 资助金额:
$ 6.1万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Operator algebras and mathematical physics
算子代数和数学物理
- 批准号:
16340045 - 财政年份:2004
- 资助金额:
$ 6.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of recent topics on operator algebras
算子代数近期课题研究
- 批准号:
14340056 - 财政年份:2002
- 资助金额:
$ 6.1万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Classification of coquasi-Hopf algebras by tensor equivalence and constructions of new braidings
通过张量等价对 coquasi-Hopf 代数进行分类和新编织的构造
- 批准号:
14540007 - 财政年份:2002
- 资助金额:
$ 6.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Classification of subfactors in theory of operator algebras and its applications
算子代数理论子因子的分类及其应用
- 批准号:
13640204 - 财政年份:2001
- 资助金额:
$ 6.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
パラグループ理論と量子群,位相的場の理論,共形場理論等との関わりの研究
研究副群论与量子群、拓扑场论、共形场论等的关系。
- 批准号:
11740098 - 财政年份:1999
- 资助金额:
$ 6.1万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
Classificaition of subfactors in operator algebra and its applications
算子代数子因子的分类及其应用
- 批准号:
10640200 - 财政年份:1998
- 资助金额:
$ 6.1万 - 项目类别:
Grant-in-Aid for Scientific Research (C)














{{item.name}}会员




