Affine Lie algebra characters and Bethe Ansatz
仿射李代数字符和 Bethe Ansatz
基本信息
- 批准号:11640027
- 负责人:
- 金额:$ 2.37万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2001
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we have investigated affine Lie algebra characters using a method in solvable lattice models, Bethe Ansatz. We also obtained important results on cellular automata which had not been predicted at the beginning of the project.1. Fermionic formula. Fermionic formula is a polynomial with positive integer coefficients arising from combinatorics of Bethe Ansatz. We conjectured that this polynomial gives the branching function of an integrable representation of an affine Lie algebra, and considered its evidence using the crystal theory in quantum group. We also proved this conjecture in several cases.2. Combinatorics of Bethe Ansatz. Besides fermionic formulae, there is an important sysmtem of algebraic equations, called Q-system, in combinatorial studies of Bethe Ansatz. Kuniba, with Nakanishi et al., obtained a solution of this Q-system from Bethe equations at q = 0.3. Soliton cellular automaton. Although this research was not in our mind at the beginning, there was a new progress by us in the studies of soliton sellular automata. A cellular automaton is defined from the crystal of a finite dimensional representation of a quantum affine algebra. We showed that the motion of solitons in this cellular automaton factorizes into the product of 2-body ones and their scattering rule is explicitly given using the combinatorial R of finite crystals.4. Discrete integrable systems. The above mentioned soliton cellular automaton in the case of affine Lie algebra An^<(1)> has been known to be obtained from the ultra discrete limit of the nonautonomous discrete KP equation. Nagai et al. proved the solitonical nature and constructed conserved quantities from this approach.
在本研究中,我们利用可解格模型中的Bethe Answer方法研究了仿射李代数的性质。我们还获得了在项目开始时没有预测的元胞自动机的重要结果。费米公式。费米子公式是由贝特安托组合数学导出的一个正整数系数多项式。证明了该多项式给出了仿射李代数的可积表示的分支函数,并利用量子群中的晶体理论给出了证明。我们也证明了这个猜想在几个情况下。Bethe Anastrous的组合数学在Bethe代数的组合研究中,除了费米子公式外,还有一个重要的代数方程系统,称为Q-系统。Kuniba与Nakanishi等人,在q = 0.3时,从Bethe方程得到了这个Q系统的解。孤子元胞自动机。虽然这方面的研究在我们最初并没有考虑到,但我们在孤子鞍自动机的研究中取得了新的进展。从量子仿射代数的有限维表示的晶体定义了元胞自动机。我们证明了在这种元胞自动机中孤子的运动可以分解为两体孤子的乘积,并且利用有限晶体的组合R可以明确地给出它们的散射规则.离散可积系统在仿射李代数An^<(1)>的情形下,上述孤立子元胞自动机是由非自治离散KP方程的超离散极限得到的。永井等人证明了孤子的性质,并从这种方法构造守恒量。
项目成果
期刊论文数量(30)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
T.Ogawa: "Periodic travelling waves and their modulation"Japan Journal of Industrial and Applied Math. 18. 521-542 (2001)
T.Okawa:“周期性行波及其调制”日本工业和应用数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A.Kuniba et al.: "The Canonical Solutions of the Q-Systems and the Kirillov-Reshetikhin Conjecture"Commun. Math. Phys.. (印刷中).
A. Kuniba 等人:“Q 系统的规范解和基里洛夫-列谢蒂欣猜想”Commun Math。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Kuniba, T. Nakanishi and Z. Tsuboi: "The canonical solutions of the Q-systems and the Kirillov-Reshetikhin conjecture"Commun. Math. Phys.. (to appear).
A. Kuniba、T. Nakanishi 和 Z. Tsuboi:“Q 系统的规范解和基里洛夫-列谢蒂欣猜想”Commun。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R. Hirota, M. Iwao and S. Tsujimoto: "Soliton equations exhibiting "Pfaffian Solutions""Glasgow Math. J.. Vol. 43A. 33-41 (2001)
R. Hirota、M. Iwao 和 S. Tsujimoto:“展示“普法夫解”的孤子方程”格拉斯哥数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
R.Hirota et al.: "Soliton equations exhibiting pfaffian solutions"Glasgow Math. Journal. 43A. 33-41 (2001)
R.Hirota 等人:“展示普法夫解的孤子方程”格拉斯哥数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OKADO Masato其他文献
OKADO Masato的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('OKADO Masato', 18)}}的其他基金
New developments in the study of quantum groups
量子群研究新进展
- 批准号:
19K03426 - 财政年份:2019
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Tetrahedron equation and quantum groups
四面体方程和量子群
- 批准号:
15K13429 - 财政年份:2015
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Studies of the algebraic and combinatorial structures related to quantum integrable systems
与量子可积系统相关的代数和组合结构的研究
- 批准号:
23340007 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Approach to the polynomials related to representation theory from quantum integrable systems
量子可积系统表示论相关多项式的探讨
- 批准号:
23654007 - 财政年份:2011
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Representation Theory of Quantum Groups and Integrable Systems
量子群与可积系统的表示论
- 批准号:
20540016 - 财政年份:2008
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Integrable Systems and Combinatorial Representation Theory
可积系统和组合表示理论
- 批准号:
18540030 - 财政年份:2006
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial Study of Crystal Bases and its Application to Discrete Integrable Systems
晶体基的组合研究及其在离散可积系统中的应用
- 批准号:
14540026 - 财政年份:2002
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Combinatorial Studies of Demazure Modules
Demazure 模块的组合研究
- 批准号:
09640034 - 财政年份:1997
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
- 批准号:
21K03280 - 财政年份:2021
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
- 批准号:
2001128 - 财政年份:2020
- 资助金额:
$ 2.37万 - 项目类别:
Standard Grant
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
- 批准号:
18K03317 - 财政年份:2018
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Conformal field theory and quantum group
共形场论和量子群
- 批准号:
17K05194 - 财政年份:2017
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
- 批准号:
17K18728 - 财政年份:2017
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Study of group-quantum group actions on operator algebras
算子代数群量子群作用的研究
- 批准号:
15K04889 - 财政年份:2015
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and quantum group
顶点算子代数和量子群
- 批准号:
25400009 - 财政年份:2013
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of quantum group actions on von Neumann algebras
冯诺依曼代数的量子群作用研究
- 批准号:
24740095 - 财政年份:2012
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Cyclic homology and quantum group symmetry
循环同调性和量子群对称性
- 批准号:
EP/E043267/1 - 财政年份:2007
- 资助金额:
$ 2.37万 - 项目类别:
Fellowship
Irreducible unitary representation of non compact quantum group SUq(1,1) and its quantum symmetric space
非紧量子群SUq(1,1)及其量子对称空间的不可约酉表示
- 批准号:
11440052 - 财政年份:1999
- 资助金额:
$ 2.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)