Integrable Systems and Combinatorial Representation Theory

可积系统和组合表示理论

基本信息

  • 批准号:
    18540030
  • 负责人:
  • 金额:
    $ 2.46万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

During the period of research project, we mainly obtained the following results.1. [Affine geometric crystal]In collaboration with M. Kashiwara and T. Nakashima, we constructed geometric crystals associated to nonexceptional affine Lie algebras. We confirmed that the ultra-discrete limit of these geometric crystals coincide with the limit of previously known perfect crystals. Moreover, except type C, we obtained explicit formulas for birational maps, called tropical R maps, that satisfy the Yang-Baxter equation.2. [Existence of crystal bases of the KR modules for nonexceptional types]There was a conjecture saying that any finite-dimensional representation of a quantum affirm algebra that has an integer multiple of a level 0 fundamental weight as highest weight (KR module) has a crystal base. We solved this conjecture for all affine Lie algebras of nonexceptional types. In collaboration with A. Schilling, we also proved that the crystals of type B^<(1)>_n, D^<(1)>_n, and A^<(2)>_<2n-1> are isomorphic to the combinatorial crystals recently constructed by Schilling.3. [Construction of the coherent family of perfect crystals for exceptional types]In collaboration with M. Kashiwara, K.C. Misra and D. Yamada, we revealed the crystal structure of the perfect crystals associated to the exceptional affine lie algebra D^<(3)>_4 at any level.
在课题研究期间,主要取得了以下成果. [仿射几何晶体]与M. Kashiwara和T. Nakashima,我们构造了与非例外仿射李代数相关的几何晶体。我们证实了这些几何晶体的超离散极限与以前已知的完美晶体的极限相一致。此外,除了C型外,我们还得到了满足Yang-Baxter方程的双有理映射(称为热带R映射)的显式公式. [非例外类型的KR模块的晶体基的存在性]有一个猜想说,任何量子肯定代数的有限维表示,具有0级基本权重的整数倍作为最高权重(KR模块)具有晶体基。我们解决了这个猜想的所有仿射李代数的非例外类型。与A合作。Schilling等提出的方法,我们还证明了B^&lt;(1)&gt;_n,D^&lt;(1)&gt;_n和A^&lt;(2)&gt;_n型晶体<2n-1>与Schilling最近构造的组合晶体同构. [构建特殊类型的完美晶体的相干家族]与M. Kashiwara,K.C. Misra和D. Yamada等人的工作揭示了与特殊仿射李代数D^&lt;(3)&gt;_4在任何水平上相关联的完美晶体的晶体结构。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the crystal bases of the KR module of type D^<(1)>_n
在 D^<(1)>_n 类型 KR 模块的晶体底座上
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.;Okado
  • 通讯作者:
    Okado
Dn(1)型KR加群の結晶基底について
基于Dn(1)型KR模块的晶体基础
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    梶原;太田;Y.Yamada;Y. Yamada;山田泰彦;山田泰彦;山田泰彦;山田泰彦;尾角正人
  • 通讯作者:
    尾角正人
Combinatorial aspect of integrable systems
可积系统的组合方面
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Kuniba;M.Okado
  • 通讯作者:
    M.Okado
Perfect crystals for UqD^(3)_4
UqD^(3)_4 的完美晶体
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kashiwara;M.; Misra. K. C.; Okado;M.; Yamada;D.
  • 通讯作者:
    D.
Affine Geometric Crystals and Limit of Perfect Crystals
仿射几何晶体与完美晶体的极限
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    中島俊樹;(M. Kashiwara;M. Okado);Takumi Noda;河田成人;中島俊樹(with M. Kashiwara M. Okado)
  • 通讯作者:
    中島俊樹(with M. Kashiwara M. Okado)
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKADO Masato其他文献

OKADO Masato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKADO Masato', 18)}}的其他基金

New developments in the study of quantum groups
量子群研究新进展
  • 批准号:
    19K03426
  • 财政年份:
    2019
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tetrahedron equation and quantum groups
四面体方程和量子群
  • 批准号:
    15K13429
  • 财政年份:
    2015
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies of the algebraic and combinatorial structures related to quantum integrable systems
与量子可积系统相关的代数和组合结构的研究
  • 批准号:
    23340007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Approach to the polynomials related to representation theory from quantum integrable systems
量子可积系统表示论相关多项式的探讨
  • 批准号:
    23654007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Representation Theory of Quantum Groups and Integrable Systems
量子群与可积系统的表示论
  • 批准号:
    20540016
  • 财政年份:
    2008
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial Study of Crystal Bases and its Application to Discrete Integrable Systems
晶体基的组合研究及其在离散可积系统中的应用
  • 批准号:
    14540026
  • 财政年份:
    2002
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affine Lie algebra characters and Bethe Ansatz
仿射李代数字符和 Bethe Ansatz
  • 批准号:
    11640027
  • 财政年份:
    1999
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial Studies of Demazure Modules
Demazure 模块的组合研究
  • 批准号:
    09640034
  • 财政年份:
    1997
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
  • 批准号:
    21K03280
  • 财政年份:
    2021
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
  • 批准号:
    2001128
  • 财政年份:
    2020
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Standard Grant
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
  • 批准号:
    18K03317
  • 财政年份:
    2018
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conformal field theory and quantum group
共形场论和量子群
  • 批准号:
    17K05194
  • 财政年份:
    2017
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
  • 批准号:
    17K18728
  • 财政年份:
    2017
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study of group-quantum group actions on operator algebras
算子代数群量子群作用的研究
  • 批准号:
    15K04889
  • 财政年份:
    2015
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and quantum group
顶点算子代数和量子群
  • 批准号:
    25400009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of quantum group actions on von Neumann algebras
冯诺依曼代数的量子群作用研究
  • 批准号:
    24740095
  • 财政年份:
    2012
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Cyclic homology and quantum group symmetry
循环同调性和量子群对称性
  • 批准号:
    EP/E043267/1
  • 财政年份:
    2007
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Fellowship
Irreducible unitary representation of non compact quantum group SUq(1,1) and its quantum symmetric space
非紧量子群SUq(1,1)及其量子对称空间的不可约酉表示
  • 批准号:
    11440052
  • 财政年份:
    1999
  • 资助金额:
    $ 2.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了