Combinatorial Study of Crystal Bases and its Application to Discrete Integrable Systems

晶体基的组合研究及其在离散可积系统中的应用

基本信息

  • 批准号:
    14540026
  • 负责人:
  • 金额:
    $ 2.56万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

(i) Geometric crystalGeometric crystal, indtoduced axiomatically by Berenstein and Kazhdan, was consttructed explicitly for type D^(1)_n of Kac-Moody Lie algebras. By using a matrix realization of this geometric crystal, we constructed a birational mapping on the product (tropical R) commuting with the action of the geometric crystal and also,showed that it satisfies the Yang-Baxter equation. It is believed that a geometric crystal exists arrogated to each vertex of the Dynkin diagram corresponding to the Lie algebra. For type D, there are n vertices, so it is expected that there are n distinct geometric crystals. During the last yeah we calculated the geometric crystal for k=2 by Mathematics in collaboration with Masaki Kashiwara at RIMS, Kyoto University. Data is huge and no way to print it out. However to write it down in a meaningful manner is, besides with the extension to the case when k is greater than 2, becomes a future problem.(ii)Crystal and soliton cellular automaton associated to an exceptional acne Lie algebraCoordinate representation of a series of finite crystals for an exceptional affine Lie algebra D_4^(3) is given and the zero action is explicitly obtained. Moreover we constructed a cell automaton corresponding to this series of crystals and determined the internal degree of freedom of the solitons appearing in the system and the scattering rule of two solitons.(iii)Box-ball system with reflecting endWe have extended the box-ball system, an important example of ultra discrete integrable systems, to the case with one reflecting end. Similar to the usual box-ball system, it has an infinite family of commuting time evolutions and conserved quantities associated to each time evolution. We also defined soliton states and described the reflection rule of one soliton and the scattering rule of two solitons in terms of combinatorics of crystals.
(i)几何晶体Berenstein和Kazhdan公理化地引入了几何晶体,并对Kac-Moody李代数的D^(1)_n型明确地构造了几何晶体.利用这种几何晶体的矩阵实现,构造了与几何晶体作用量可交换的乘积(热带R)上的一个双有理映射,并证明了它满足Yang-Baxter方程.据信,存在一个几何晶体,其被分配到对应于李代数的Dynkin图的每个顶点。对于D型,有n个顶点,因此预期有n个不同的几何晶体。在过去的是,我们计算了几何晶体k=2的数学与Masaki Kashiwara在RIMS,京都大学合作。数据很大,无法打印出来。然而,以一种有意义的方式写下它,除了扩展到k大于2的情况之外,成为未来的问题。(ii)与例外仿射李代数相关联的晶体和孤子元胞自动机给出了例外仿射李代数D_4^(3)的一系列有限晶体的坐标表示,并明确地得到了零作用量。构造了相应的元胞自动机,确定了系统中孤子的内部自由度和两个孤子的散射规律。(iii)具有反射端的Box-ball系统我们将超离散可积系统的一个重要例子Box-ball系统推广到具有一个反射端的情形。类似于通常的盒球系统,它有一个无限族的交换时间演化和守恒量与每个时间演化。定义了孤子态,用晶体的组合学描述了一个孤子的反射规律和两个孤子的散射规律。

项目成果

期刊论文数量(28)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
G.Hatayama et al.: "Scattering rules in soliton cellular automata…"Contemporary Mathematics. 297. 151-182 (2002)
G. Hatayama 等人:“孤子元胞自动机中的散射规则……”当代数学 297. 151-182 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Geometric crystal and tropical R for D^<(1)>_n
D^<(1)>_n 的几何晶体和热带 R
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Kuniba;M.Okado;T.Takagi;Y.Yamada
  • 通讯作者:
    Y.Yamada
Scattering rules in soliton cellular automata associated with crystal bases
与晶体基相关的孤子元胞自动机中的散射规则
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Kuniba;M.Okado;T.Takagi;Y.Yamada;A.Nagai;M.Okado et al.
  • 通讯作者:
    M.Okado et al.
Introduction to Mathematical Physics 5 : (ed. Y.Kawahigashi)
数学物理导论 5:(Y.Kawahigashi 编)
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G.Hatayama;A.Kuniba;M.Okado;T.Takagi;Y.Yamada;小川知之 他;T.Ogawa et al.
  • 通讯作者:
    T.Ogawa et al.
A Quantization of box-ball systems
箱球系统的量化
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R.Inoue;A.Kuniba;M.Okado
  • 通讯作者:
    M.Okado
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKADO Masato其他文献

OKADO Masato的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKADO Masato', 18)}}的其他基金

New developments in the study of quantum groups
量子群研究新进展
  • 批准号:
    19K03426
  • 财政年份:
    2019
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Tetrahedron equation and quantum groups
四面体方程和量子群
  • 批准号:
    15K13429
  • 财政年份:
    2015
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Studies of the algebraic and combinatorial structures related to quantum integrable systems
与量子可积系统相关的代数和组合结构的研究
  • 批准号:
    23340007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Approach to the polynomials related to representation theory from quantum integrable systems
量子可积系统表示论相关多项式的探讨
  • 批准号:
    23654007
  • 财政年份:
    2011
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Representation Theory of Quantum Groups and Integrable Systems
量子群与可积系统的表示论
  • 批准号:
    20540016
  • 财政年份:
    2008
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrable Systems and Combinatorial Representation Theory
可积系统和组合表示理论
  • 批准号:
    18540030
  • 财政年份:
    2006
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Affine Lie algebra characters and Bethe Ansatz
仿射李代数字符和 Bethe Ansatz
  • 批准号:
    11640027
  • 财政年份:
    1999
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Combinatorial Studies of Demazure Modules
Demazure 模块的组合研究
  • 批准号:
    09640034
  • 财政年份:
    1997
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
  • 批准号:
    21K03280
  • 财政年份:
    2021
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-Commutative Spaces, Their Symmetries, and Geometric Quantum Group Theory
非交换空间、它们的对称性和几何量子群论
  • 批准号:
    2001128
  • 财政年份:
    2020
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Standard Grant
Research of quantum group actions on operator algebras
算子代数上的量子群作用研究
  • 批准号:
    18K03317
  • 财政年份:
    2018
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Conformal field theory and quantum group
共形场论和量子群
  • 批准号:
    17K05194
  • 财政年份:
    2017
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Quantization of the fundamental group by dual quantum group
双量子群对基本群的量子化
  • 批准号:
    17K18728
  • 财政年份:
    2017
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Study of group-quantum group actions on operator algebras
算子代数群量子群作用的研究
  • 批准号:
    15K04889
  • 财政年份:
    2015
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Vertex operator algebras and quantum group
顶点算子代数和量子群
  • 批准号:
    25400009
  • 财政年份:
    2013
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of quantum group actions on von Neumann algebras
冯诺依曼代数的量子群作用研究
  • 批准号:
    24740095
  • 财政年份:
    2012
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Cyclic homology and quantum group symmetry
循环同调性和量子群对称性
  • 批准号:
    EP/E043267/1
  • 财政年份:
    2007
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Fellowship
Irreducible unitary representation of non compact quantum group SUq(1,1) and its quantum symmetric space
非紧量子群SUq(1,1)及其量子对称空间的不可约酉表示
  • 批准号:
    11440052
  • 财政年份:
    1999
  • 资助金额:
    $ 2.56万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了