THE STUDY OF NON-LINEAR PHENOMENA BY THE ASYMPTOTIC ANALYSIS

非线性现象的渐近分析研究

基本信息

  • 批准号:
    11640124
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2001
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to describe nonlinear phenomena mathematically by using asymptotic analysis. And we have the following results.1) Narukawa and Fukagai proposed a mathematical model related to the nonlinear elasticity. This is described by a degenerate quasilinear elliptic equation whose principal part has different orders at 0 and at infinity. They have showed a global bifurcation diagram of positive solutions for a nonlinear eigenvalue problem of such quasilinear equations and, in particular, the coexistence of multiple positive solutions. These results obtained by regularity estimate of weak solutions and modifying the argument given by Ambrosetti, Brezis and Cerami in the semilinear case.2) Ohnuma has investigated a class of singular degenerate parabolic equations including the p-Laplace diffusion equation and the equation of the mean curvature flow, and proved the comparison principle for these equations. He also discovered a strong maximum principle of quasilinear degenerate elliptic equations.3) Murakami showed a necessary and sufficient condition of the asymptotic stability of a fixed point for a higher order linear difference equation. He has also investigated some nonlinear difference equations, derived the formula to compute the stability conditions of the invariant curve caused by the Neimark-Sacker bifurcation and, moreover, given the explicit expression of the invariant curve.4) Kohda has obtained blow-up criteria for a solution of an initial value problem of a semilinear parabolic equation. This is described by using a super-solusion and a sub-solution of the stationary problem. Moreover, he had given some condition which guarantees the blow-up of the solution.
本计画的目的是用渐近分析来描述非线性现象。我们得到了以下结果。1) Narukawa和Fukagai提出了非线性弹性的数学模型。这是用一个退化的拟线性椭圆方程来描述的,它的主成分在0和无穷远处具有不同的阶数。他们给出了一类拟线性方程的非线性特征值问题的正解的全局分岔图,特别是多个正解的共存。这些结果是在半线性情况下,通过对弱解的正则性估计和修正Ambrosetti、Brezis和Cerami给出的论证得到的。2) Ohnuma研究了一类奇异退化抛物型方程,包括p-Laplace扩散方程和平均曲率流方程,并证明了这些方程的比较原理。他还发现了拟线性退化椭圆方程的一个强极大值原理。3) Murakami给出了一类高阶线性差分方程不动点渐近稳定的一个充分必要条件。他还研究了一些非线性差分方程,推导了由neimmark - sacker分岔引起的不变曲线稳定性条件的计算公式,并给出了不变曲线的显式表达式。4) Kohda给出了一类半线性抛物方程初值问题解的爆破判据。这是用平稳问题的超解和子解来描述的。此外,他还给出了保证解的爆破的条件。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A. Kohda and T. Suzuki: "Blow-up Criteria for semilinear Parabolic Equations"J. Mathematical Analysis and Applications. 243. 127-139 (2000)
A. Kohda 和 T. Suzuki:“半线性抛物型方程的放大准则”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ohnuma: "On a comparison principle for singular degenerate parabolic equations with O-th order term"Nonlinear Analysis. 47. 1693-1701 (2001)
M.Ohnuma:“关于具有 O 阶项的奇异简并抛物线方程的比较原理”非线性分析。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Giga,M.Ohnuma&M.Sato: "On the strong maximum principle and the large time behavior of generalized mean curvature flow・・・"Journal of differential equations. 154. 107-131 (1999)
Y.Giga、M.Ohnuma&M.Sato:“关于广义平均曲率流的强极大值原理和大时间行为……”微分方程杂志 154. 107-131 (1999)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Ohnuma: "A strong maximum principle of the degenerate elliptic equations"Proceedings of the tenth Tokyo Conference on Nonlinear PDE 2000. 66-70 (2000)
M.Ohnuma:“简并椭圆方程的强最大原理”第十届东京非线性偏微分方程会议论文集 2000. 66-70 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M. Ohnuma.: "A strong maximum principle of the degenerate elliptic equations"Proceedings of the tenth Tokyo Conference on Nonlinear PDE 2000. 66-74 (2000)
M. Ohnuma.:“简并椭圆方程的强最大原理”第十届东京非线性偏微分方程会议论文集 2000. 66-74 (2000)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ITO Masayuki其他文献

ITO Masayuki的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ITO Masayuki', 18)}}的其他基金

An exploration of causative genes of focal cortical dysplasia with intractable epilepsy, using advanced technologies
利用先进技术探索局灶性皮质发育不良伴难治性癫痫的致病基因
  • 批准号:
    22659197
  • 财政年份:
    2010
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
A molecular study of methyl-CpG binding protein 2 (MeCP2) dysfunction leaded to Rett syndrome phenotype
甲基 CpG 结合蛋白 2 (MeCP2) 功能障碍导致 Rett 综合征表型的分子研究
  • 批准号:
    18390304
  • 财政年份:
    2005
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A Fundamental Study of Molecular and Developmental Pathology for Prevention and Treatment of Perinatal Hypoxic-Ischemic Brain Damage
围产期缺氧缺血性脑损伤防治的分子与发育病理学基础研究
  • 批准号:
    13671147
  • 财政年份:
    2001
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
THE MATHEMATICAL ANALYSIS TO NON-LINEAR PHENOMENA THROUGH NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS
非线性偏微分方程对非线性现象的数学分析
  • 批准号:
    09640276
  • 财政年份:
    1997
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Potential-kernels of logarithmic type and their applications
对数型势核及其应用
  • 批准号:
    03452009
  • 财政年份:
    1991
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

Regularity Problems in Free Boundaries and Degenerate Elliptic Partial Differential Equations
自由边界和简并椭圆偏微分方程中的正则问题
  • 批准号:
    2349794
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Interfaces, Degenerate Partial Differential Equations, and Convexity
接口、简并偏微分方程和凸性
  • 批准号:
    2348846
  • 财政年份:
    2024
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Homogenization of random walks: degenerate environments and long-range jumps
随机游走的同质化:退化环境和长程跳跃
  • 批准号:
    EP/W022923/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Research Grant
Enhancement of optical interaction and all-optical switching by degenerate critical coupling in single-layered graphene
单层石墨烯简并临界耦合增强光相互作用和全光开关
  • 批准号:
    23H00274
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Degenerate Whittaker functions and application to automorphic L functions
简并 Whittaker 函数及其在自同构 L 函数中的应用
  • 批准号:
    23K12965
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
  • 批准号:
    23K03079
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Degenerate diffusions in finite and infinite dimensions: smoothing and convergence
有限和无限维度的简并扩散:平滑和收敛
  • 批准号:
    2246491
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Standard Grant
Inverse problems for degenerate hyperbolic partial differential equations on manifolds
流形上简并双曲偏微分方程的反问题
  • 批准号:
    22K20340
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Strong-Electron Correlation with Degenerate Richardson-Gaudin States
与简并理查森-高丁态的强电子相关性
  • 批准号:
    574012-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    University Undergraduate Student Research Awards
Sharp traveling waves for degenerate diffusion equations with delay
具有延迟的简并扩散方程的尖锐行波
  • 批准号:
    RGPIN-2022-03374
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了