生産システム設計への組合せ凸解析の応用

组合凸分析在生产系统设计中的应用

基本信息

  • 批准号:
    11878069
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    1999
  • 资助国家:
    日本
  • 起止时间:
    1999 至 2000
  • 项目状态:
    已结题

项目摘要

本研究の目的は,組合せ凸解析の理論に基づいて,生産システム設計に現れる最適化問題の組合せ構造を明確にすると共に,最適な生産システムを設計するための実用的な解法を構築することである.この目的を実現するため,本年度は以下の研究を行った.・スケーリング技法によるM凸関数最小化アルゴリズムの研究.M凸関数の最小化問題に対しては,最急降下法や領域縮小法が提案されているが,本研究においては,組合せ最適化のアルゴリズムにおいて基本的な技法であるスケーリング技法をM凸関数最小化に用いる可能性を研究した.一般にM凸関数はスケーリングに関して閉じていないが,ツリー型M凸関数や2次のM凸関数などのクラスのM凸関数がスケーリングに関して閉じていることを示すとともに,スケーリング技法と最急降下法とを組み合わせた効率的な算法を提案した.・M凸関数の運搬経路問題への応用.時間枠制約つき運搬経路問題とは,各顧客への訪問時間枠制約をなるべく満たし,かつ運搬費用を最小にする経路及びスケジュールを求める問題である.経路決定とスケジューリングを分離するタイプのヒューリスティックにおいて,最適なスケジュールを求める問題がツリー型M凸関数の最小化問題として定式化できることを示した.・2次のM凸関数・L凸関数の特徴付け.一般に2次の凸関数は半正定値対称行列で表現されるが,本研究では,どのような付加的条件がM凸性・L凸性を特徴づけかという問題意識をもち,この問題に対して完全な解答を与えた.その副産物として,確率過程論などで研究されてきたディリクレ形式との関連が明らかとなった.
The purpose of this study is to integrate the basic theory of theoretical analysis and the design of the optimization problem. in this study, the purpose of this study is to analyze the basic theory of theoretical analysis and the design of the optimization problem. the purpose of this study is to analyze the basic theory of theoretical analysis and the design of the optimization problem. The purpose of this study is to make a study of the following projects this year. This study aims to minimize the number of convexities in the field of law. This study combines the basic techniques of minimizing the number of convexations and minimizing the number of bumps in the field of law. In general, the number of bulges, the number of bulges, the number of M convex number is not suitable for the problem of moving the road. The time agreement is related to the transportation problem, and the customer schedule is used to solve the problem, and the minimum route is used to solve the problem. The way to determine the number of problems is to minimize the number of convex problems in order to minimize the problem. 2 times M convex number L convex number special payment. In general, the ranks of quadratic convex numbers and positive semidefinite numbers show that there is a problem. In this study, the condition of convexity, convexity, convex, convexity, convexity, Please make sure that you can make sure that you can learn more about the process of study and study.

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.T.McCormick and A.Shioura: "Minimum Ratio Canceling is Oracle Polynomial for Linear Programming, but Not Strongly Polynomial, Even for Networks"Operations Research Letters. 27. 199-207 (2000)
S.T.McCormick 和 A.Shioura:“最小比率取消是线性规划的 Oracle 多项式,但不是强多项式,即使对于网络也是如此”运筹学快报。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
V.Danilov,G.Koshevoy and K.Murota: "Discrete Convexity and Equilibria in Economies with Indivisible Goods and Money"Mathematical Social Sciences. (発表予定).
V.Danilov、G.Koshevoy 和 K.Murota:“不可分割商品和货币经济中的离散凸性和均衡”数学社会科学(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Shioura: "Level Set Characterization of M-convex Functions"IEICE Transactions. (掲載予定). (2000)
A. Shioura:“M 凸函数的水平集表征”IEICE Transactions(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Shioura: "Level Set Characterization of M-convex Functions"IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences. E83-A. 586-589 (2000)
A.Shioura:“M-凸函数的水平集表征”IEICE Transactions on Fundamentals of Electronics、Communications and Computer Sciences。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
K.Murota: "Discrete convex analysis - Exposition on conjugacy and duality, In Graph Theory and Combinatorial Biology, (eds.L.Lovasz,et al.)"Bolyai Society Mathematical Studies. 7. 253-278 (1999)
K.Murota:“离散凸分析 - 关于共轭性和对偶性的阐述,图论和组合生物学,(L.Lovasz 等编辑)”Bolyai 学会数学研究。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

室田 一雄其他文献

フェーズフィールド法のおもしろさ
相场法的有趣方面
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    田中 健一郎;杉原 正顯;室田 一雄;K. -I. Yoshikawa;小林亮
  • 通讯作者:
    小林亮
岩波数学辞典第4版,(連立1次方程式の数値計算法の項目)(日本数学会編集)
岩波数学词典第4版(联立线性方程数值计算方法条目)(日本数学会编)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    張 紹良;杉原 正顯;室田 一雄
  • 通讯作者:
    室田 一雄
A Proof of the M-Convex Intersection Theorem (ゲーム理論、数理経済学への離散凸解析の応用 短期共同研究報告集)
M-凸交集定理的证明(离散凸分析在博弈论和数理经济学中的应用短期联合研究报告合集)
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    室田 一雄
  • 通讯作者:
    室田 一雄
混合多項式行列における小行列式最大次数列に対する組合せ緩和法
混合多项式矩阵中小行列式最大阶序列的组合松弛方法
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    佐藤 峻;室田 一雄
  • 通讯作者:
    室田 一雄
岩波数学辞典第4版,(固有値の数値計算法の項目)(日本数学会編集)
岩波数学词典第4版(特征值的数值计算方法条目)(日本数学会编)
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    速水 謙;室田 一雄
  • 通讯作者:
    室田 一雄

室田 一雄的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('室田 一雄', 18)}}的其他基金

整凸性を軸とする離散凸解析の研究
以有序凸性为中心的离散凸性分析研究
  • 批准号:
    23K11001
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
離散凸解析による資源配分問題の研究
基于离散凸分析的资源分配问题研究
  • 批准号:
    20K11697
  • 财政年份:
    2020
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
双対性がもたらす多視点モデル化:数学原理からシステム設計へ
对偶性带来的多视图建模:从数学原理到系统设计
  • 批准号:
    19656103
  • 财政年份:
    2007
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
離散構造の凸近似に関する研究
离散结构凸逼近研究
  • 批准号:
    16654019
  • 财政年份:
    2004
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
離散最適化における準凸性の理論の構築と社会工学への応用
离散优化半凸理论构建及其在社会工程中的应用
  • 批准号:
    13874016
  • 财政年份:
    2001
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
離散凸解析の社会科学への展開
社会科学中离散凸分析的发展
  • 批准号:
    10874018
  • 财政年份:
    1998
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
離散凸解析の研究
离散凸分析研究
  • 批准号:
    09874046
  • 财政年份:
    1997
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
数理計画法における離散凸性の研究
数学规划中的离散凸性研究
  • 批准号:
    08650078
  • 财政年份:
    1996
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
分岐の数値解析における精度保証の研究
分支数值分析精度保证研究
  • 批准号:
    07650077
  • 财政年份:
    1995
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
組合せ理論と群表現論に基づく大規模システムの構造解析手法の研究
基于组合理论和群表示理论的大规模系统结构分析方法研究
  • 批准号:
    05650064
  • 财政年份:
    1993
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

整凸性を軸とする離散凸解析の研究
以有序凸性为中心的离散凸性分析研究
  • 批准号:
    23K11001
  • 财政年份:
    2023
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
離散凸解析による資源配分問題の研究
基于离散凸分析的资源分配问题研究
  • 批准号:
    20K11697
  • 财政年份:
    2020
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
マトロイド理論・離散凸解析理論に基づく社会システム解析理論の構築
基于拟阵理论和离散凸分析理论的社会系统分析理论构建
  • 批准号:
    20K11699
  • 财政年份:
    2020
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Discrete Allocation Problems with hard constraints: Study with the aid of discrete convex analysis
具有硬约束的离散分配问题:借助离散凸分析进行研究
  • 批准号:
    16K00023
  • 财政年份:
    2016
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on New Fixed Point Theory and Convex Analysis
基于新不动点理论和凸分析的非线性泛函分析及非线性问题研究
  • 批准号:
    15K04906
  • 财政年份:
    2015
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Cross-Sectional Research of Discrete Convex Analysis
离散凸分析的横截面研究
  • 批准号:
    26280004
  • 财政年份:
    2014
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
The Study of Nonlinear Functional Analysis and Nonlinear Problems Based on Fixed Point Theory and Convex Analysis
基于不动点理论和凸分析的非线性泛函分析和非线性问题的研究
  • 批准号:
    23540188
  • 财政年份:
    2011
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
High-Accuracy Information-Rich Inventory Management Based on Discrete Convex Analysis
基于离散凸分析的高精度信息丰富的库存管理
  • 批准号:
    22710148
  • 财政年份:
    2010
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
The Study of Nonlinear Functional Analysis and Convex Analysis and its Applications Based on Optimization Theory and Fixed Point Theory
基于最优化理论和不动点理论的非线性泛函分析和凸分析及其应用研究
  • 批准号:
    19540167
  • 财政年份:
    2007
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Practical Algorithms for Nonlinear Integer Programs Based on Discrete Convex Analysis Approach
基于离散凸分析法的非线性整数规划实用算法研究
  • 批准号:
    18740042
  • 财政年份:
    2006
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了