Teichmueller groupoids and monodromy in conformal field theory

共形场论中的 Teichmueller 群群和单峰

基本信息

  • 批准号:
    13640031
  • 负责人:
  • 金额:
    $ 2.5万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

1. We described the monodromy representation of Teichmueller goupoids associated with conformal field theory. Extending Ullmo-Zhang's result on the Bogomolov conjecture, we gave a condition that a subvariety of an abelian variety is isomorphic to an abelian variety in terms of the value distribution of a Neron-Tate height function on the subvariety. We described the Riemann surfaces associated with the monodromy representation of hypergeometric equation with purely imaginary exponents.2. We gave an explicit formula of the Hasse unit index for the unit group of quadratic fields, and considered a Problem of Hasse for the ring of integers in certain abelian fields.3. We tried to justify the perturbative Chern-Simons theory using the asymptotic expansion theory via infinite dimensional stochastic analysis, and derived a simple Homfly polynomial.4. We showed that for certain algebraic geometry codes, the minimum distance are equal to the Fang-Rao bound, and found an algebraic geometry code of other type with same property.5. We gave the upper bound for the average number of connected components of the induced subgraphs of the graphs for simplicial polytopes, and proved that the arithmetical rank is equal to the projective dimension for the almost complete intersection Stanley-Reisner ideals.6. We calculated the virtual cohomological dimension and the Euler number of the mapping class group of a three-dimensional handlebody.
1. 我们描述了与共形场论相关的Teichmueller群似体的单态表示。推广了Ullmo-Zhang关于Bogomolov猜想的结果,我们给出了一个条件,即一个阿贝尔变体的一个子变体与一个阿贝尔变体在子变体上的Neron-Tate高度函数的值分布是同构的。我们描述了与纯虚指数超几何方程的单调表示有关的黎曼曲面。给出了二次域单位群的Hasse单位指标的显式公式,并考虑了若干阿贝尔域中整数环的Hasse问题。通过无限维随机分析,我们尝试用渐近展开理论来证明摄动chen - simons理论,并推导出一个简单的Homfly多项式。我们证明了某些代数几何码的最小距离等于Fang-Rao界,并发现了另一类具有相同性质的代数几何码。给出了简单多边形图的诱导子图的连通分量的平均数目的上界,并证明了几乎完全交Stanley-Reisner理想的算术秩等于投影维数。计算了三维柄体映射类群的虚上同调维数和欧拉数。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hyeong-Kee Song and Tsuyoshi Uehara: "On the Feng-Rao bound for the minimum distance of certain algebraic geometry codes"Kyushu J. Math.. Vol.56. 405-418 (2002)
Hyun-Kee Song 和 Tsuyoshi Uehara:“关于某些代数几何代码的最小距离的 Feng-Rao 界”九州 J. Math.. Vol.56。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Matoda, Toru Nakahara, S.I.A.Shah: "On a problem of Hasse for certain imaginary abelian fields"J. Number Theory. 96. 326-334 (2002)
Y.Matoda、Toru Nakahara、S.I.A.Shah:“关于某些想象的阿贝尔域的 Hasse 问题”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
S.I.A.Shah, Toru Nakahara: "Monogenesis of the rings of integers in certain imaginary abelian fields"Nagoya Math. J.. 168. 85-92 (2002)
S.I.A.Shah,Toru Nakahara:“某些想象的阿贝尔域中整数环的单生性”名古屋数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y. Motoda, T. Nakahara, S. I. A. Shah: "On a Problem of Hasse for certain imaginary abelian fields"J. Number Theory. Vol.96. 326-334 (2002)
Y. Motoda、T. Nakahara、S. I. A. Shah:“关于某些想象的阿贝尔域的 Hasse 问题”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Takashi Ichikawa: "Teichmueller groupoids and Galois action"J. Reine Angew. Math.. (to appear).
Takashi Ichikawa:“Teichmueller 群群和伽罗瓦作用”J.
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ICHIKAWA Takashi其他文献

Developing a Spectrograph for Observing the Atmospheric Emission in K-dark band
开发用于观测 K 暗波段大气发射的光谱仪
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TSUMURA Kohji;ICHIKAWA Takashi;ITA Yoshifusa
  • 通讯作者:
    ITA Yoshifusa

ICHIKAWA Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ICHIKAWA Takashi', 18)}}的其他基金

Infinite product presentation of the Mumford form and special values of geometric zeta functions
芒福德形式的无限积表示和几何 zeta 函数的特殊值
  • 批准号:
    26400018
  • 财政年份:
    2014
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Motivic structure of nilpotent completions of modular groups
模群幂零完成的动机结构
  • 批准号:
    23540021
  • 财政年份:
    2011
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of modular varieties and congruence, P-adic theory of Siegel modular forms
模簇和同余的几何,西格尔模形式的 P-adic 理论
  • 批准号:
    20540018
  • 财政年份:
    2008
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Technology for 2m Infrared Telescope in Antarctica
南极2m红外望远镜技术开发
  • 批准号:
    18340050
  • 财政年份:
    2006
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
New construction of vector bundles on Riemann surfaces and Verlinde's formula
黎曼曲面上向量丛的新构造及Verlinde公式
  • 批准号:
    18540039
  • 财政年份:
    2006
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
VERTEX OPERATOR ALGEBRAS AND MODULI SPACES OF ALGEBRAIC CURVES
顶点算子代数和代数曲线的模空间
  • 批准号:
    15540036
  • 财政年份:
    2003
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on the Evolution of Stellar Mass Distribution at High-z Universe with Multi-Object Infrared Camera and Spectrograph
利用多目标红外相机和摄谱仪研究高z宇宙恒星质量分布演化
  • 批准号:
    14340059
  • 财政年份:
    2002
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Near-Infrared Mosaic Camera
近红外马赛克相机
  • 批准号:
    11554005
  • 财政年份:
    1999
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Motivic aspect of moduli space of algebraic curves
代数曲线模空间的动机方面
  • 批准号:
    11640035
  • 财政年份:
    1999
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moduli space of algebraic curves and automorphic forms
代数曲线和自守形式的模空间
  • 批准号:
    09640047
  • 财政年份:
    1997
  • 资助金额:
    $ 2.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了