Motivic structure of nilpotent completions of modular groups
模群幂零完成的动机结构
基本信息
- 批准号:23540021
- 负责人:
- 金额:$ 3.24万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
By studying arithmetic geometry of algebraic curves, abelian varieties and their moduli spaces, we obtained the following results. 1. We constructed a theory of Hecke operators on elliptic modular motives, and as its application, we showed the algebraicity of multiple modular L-values. 2. Using rigid analysis, we gave a solution to the Schottky problem, namely a condition that abelian varieties become Jacobi varieties. 3. We constructed a basic theory of p-adic vector-valued Siegel modular forms. Further, we gave p-adic versions of Shimura's nearly holomorphic vector-valued Siegel modular forms and showed the algebraicity of their values at CM points. 4. By using the arithmetic Schottky uniformization theory, we showed the arithmeticity of the special values for geometric zeta functions of hyperbolic 3-manifolds.
通过对代数曲线、交换簇及其模空间的算术几何的研究,得到了如下结果。1.我们构造了椭圆模基上的Hecke算子理论,并作为其应用,证明了多重模L-值的代数性。2.利用刚性分析方法,给出了Schottky问题的一个解,即交换簇成为Jacobi簇的一个条件。3.建立了p-adic向量值Siegel模形式的基本理论。进一步,我们给出了Shimura的几乎全纯向量值Siegel模形式的p-adic版本,并证明了它们在CM点上的值的代数性。4.利用算术Schottky一致化理论,证明了双曲三维流形几何zeta函数特殊值的算术性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Arithmeticity of vector-valued Siegel modular forms in analytic and p-adic cases
解析和 p-adic 情况下向量值 Siegel 模形式的算术性
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Kaneda;M.;Masanori Katsurada;Takashi ICHIKAWA
- 通讯作者:Takashi ICHIKAWA
Vector bundles on a Riemann surface
黎曼曲面上的向量丛
- DOI:10.1007/s00209-010-0703-8
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Andersen;H.H. and Kaneda;M.;K. Matsumoto and H. Tsumura;Takashi Ichikawa
- 通讯作者:Takashi Ichikawa
Moduli of algebraic curves and automorphic forms
代数曲线和自守形式的模
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Y. Komori;K. Matsumoto and H. Tsumura;Takashi Ichikawa
- 通讯作者:Takashi Ichikawa
Selberg zeta values of Schottky groups, and the Mumford isomorphisms
肖特基群的 Selberg zeta 值和 Mumford 同构
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Y. Komori;K. Matsumoto and H. Tsumura;Takashi ICHIKAWA
- 通讯作者:Takashi ICHIKAWA
Algebraic and rigid geometry on the Schottky problem
肖特基问题的代数和刚性几何
- DOI:10.1515/crelle-2013-0059
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Y.Komori;K.Matsumoto and H.Tsumura;Takashi Ichikawa
- 通讯作者:Takashi Ichikawa
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ICHIKAWA Takashi其他文献
Developing a Spectrograph for Observing the Atmospheric Emission in K-dark band
开发用于观测 K 暗波段大气发射的光谱仪
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
TSUMURA Kohji;ICHIKAWA Takashi;ITA Yoshifusa - 通讯作者:
ITA Yoshifusa
ICHIKAWA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ICHIKAWA Takashi', 18)}}的其他基金
Infinite product presentation of the Mumford form and special values of geometric zeta functions
芒福德形式的无限积表示和几何 zeta 函数的特殊值
- 批准号:
26400018 - 财政年份:2014
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of modular varieties and congruence, P-adic theory of Siegel modular forms
模簇和同余的几何,西格尔模形式的 P-adic 理论
- 批准号:
20540018 - 财政年份:2008
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Technology for 2m Infrared Telescope in Antarctica
南极2m红外望远镜技术开发
- 批准号:
18340050 - 财政年份:2006
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New construction of vector bundles on Riemann surfaces and Verlinde's formula
黎曼曲面上向量丛的新构造及Verlinde公式
- 批准号:
18540039 - 财政年份:2006
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
VERTEX OPERATOR ALGEBRAS AND MODULI SPACES OF ALGEBRAIC CURVES
顶点算子代数和代数曲线的模空间
- 批准号:
15540036 - 财政年份:2003
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the Evolution of Stellar Mass Distribution at High-z Universe with Multi-Object Infrared Camera and Spectrograph
利用多目标红外相机和摄谱仪研究高z宇宙恒星质量分布演化
- 批准号:
14340059 - 财政年份:2002
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Teichmueller groupoids and monodromy in conformal field theory
共形场论中的 Teichmueller 群群和单峰
- 批准号:
13640031 - 财政年份:2001
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Near-Infrared Mosaic Camera
近红外马赛克相机
- 批准号:
11554005 - 财政年份:1999
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Motivic aspect of moduli space of algebraic curves
代数曲线模空间的动机方面
- 批准号:
11640035 - 财政年份:1999
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Moduli space of algebraic curves and automorphic forms
代数曲线和自守形式的模空间
- 批准号:
09640047 - 财政年份:1997
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
双曲的代数曲線の遠アーベル的内在性の研究
双曲代数曲线的远阿贝尔内在性研究
- 批准号:
24K06668 - 财政年份:2024
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
代数曲線の有理点問題の有理矩形求積公式及び有理三角形への応用
代数曲线有理点问题的有理矩形求积公式及其在有理三角形中的应用
- 批准号:
24KJ0183 - 财政年份:2024
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
量子代数曲線と対称性から探る、超共形場の理論と超弦理論
从量子代数曲线和对称性探索超共形场论和超弦理论
- 批准号:
22K03598 - 财政年份:2022
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
代数曲線の特異点とピカールスキーム
代数曲线的奇异性和皮卡德格式
- 批准号:
21J00489 - 财政年份:2021
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
代数曲線のm次可解Grothendieck予想について
关于代数曲线的 m 阶可解格洛腾迪克猜想
- 批准号:
21J11884 - 财政年份:2021
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
ガロア点,最大曲線,自己同型群による代数曲線の研究とその応用
利用伽罗瓦点、最大曲线和自同构群研究代数曲线及其应用
- 批准号:
20J12384 - 财政年份:2020
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
双対多点代数曲線符号の高速リスト復号に関する研究
对偶多点代数曲线码快速列表译码研究
- 批准号:
20K04490 - 财政年份:2020
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
計算代数手法に基づく正標数の代数曲線に関する研究の深化と暗号応用への展望
基于计算代数方法的正特征代数曲线深化研究及密码学应用展望
- 批准号:
20K14301 - 财政年份:2020
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
代数曲線の族に付随する基本群スキームの比較準同型の研究とその応用
代数曲线族基本群格式的比较同态研究及其应用
- 批准号:
19J00366 - 财政年份:2019
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for JSPS Fellows
可積分系のタウ関数と代数曲線
可积系统的 Tau 函数和代数曲线
- 批准号:
19K03528 - 财政年份:2019
- 资助金额:
$ 3.24万 - 项目类别:
Grant-in-Aid for Scientific Research (C)