Motivic aspect of moduli space of algebraic curves
代数曲线模空间的动机方面
基本信息
- 批准号:11640035
- 负责人:
- 金额:$ 2.05万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1999
- 资助国家:日本
- 起止时间:1999 至 2000
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Teichmueller groupoids are fundamental groupoids of the moduli space of pointed Riemann surfaces, and are studied in topology and mathematical physics. Using the arithmetic Schottky-Mumford uniformization theory on algebraic curves given by the head investigator, we constructed Teichmueller groupoids in the category of arithmetic geometry.2. Using the result in 1, we verified Grothendieck's conjecture on motives attached to Teichmueller groupoids for Galois representations and monodromy representations given by conformal field theory, i.e. showed that these objects are generated by basic ones.3. We described explicitly the Chow-forms of elliptic normal curves of degree 4, and showed that certain projective algebraic varieties admit Chow-forms having a special property.4. We studied unit groups, class numbers and integer rings for some abelian number fields.5. We discussed the infinite level asymptotics of the perturbative Chern-Simons integral without renormalization, by introducing a Gaussian kernel increasing along the level tends to infinity.6. We determined the minimum distances of evaluation codes of the Hermite type, and constructed the bases of a part of trace-norm codes.7. Using complex of curves, we obtained Gervais' symmetric presentation for the mapping class group of a surface. Furthermore, we determined the virtual cohomological dimension and the Euler number of the mapping class group of a 3-dimensional handlebody.
1. Teichmueller群胚是点黎曼曲面的模空间的基本群胚,在拓扑学和数学物理学中有研究。利用首席研究员给出的代数曲线上的算术Schottky-Mumford单值化理论,构造了算术几何范畴内的Teichmueller群胚.利用文献[1]中的结果,我们证明了Grothendieck关于共形场论给出的Galois表示和monodromy表示的Teichmueller群胚的基元的猜想,即证明了这些对象是由基元生成的.我们明确地描述了四次椭圆法曲线的Chow-形式,并证明了某些射影代数簇允许具有特殊性质的Chow-形式.研究了某些交换数域的单位群、类数和整数环.通过引入一个沿着水平递增的高斯核,讨论了无重整化微扰Chern-Simons积分的无穷水平渐近性.确定了Hermite型求值码的最小距离,并构造了部分迹范数码的基.利用曲线的复形,得到了曲面映射类群的热尔韦对称表示。进一步,我们确定了一个3维非线性体的映射类群的虚上同调维数和Euler数。
项目成果
期刊论文数量(27)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Itaru Mitoma: "Wiener space approach to a perturbative Chern-Simons integral"Stochastic Processes,Physics and Geometry,New Interplays,Proceedings. (to appear).
Itaru Mitoma:“微扰陈-西蒙斯积分的维纳空间方法”随机过程、物理和几何、新相互作用、论文集。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tsuyoshi Uehara: "On minimum distance of algebraic-geometric codes"Adv.Stud.Contemp.Math.(Pusan). 1. 1-15 (1999)
Tsuyoshi Uehara:“论代数几何代码的最小距离”Adv.Stud.Contemp.Math.(釜山)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Tatsuji Tanaka: "On the Chow-forms of elliptic normal curves of degree 4"Tsukuba J.Math.. vol.24. 109-125 (2000)
田中龙二:“论 4 次椭圆正态曲线的 Chow 形式”Tsukuba J.Math.. vol.24。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toru Nakahara et al.: "On the units and the class number of certain composita of two quadratic fields"Proc.Japan Acad.. vol.75 A. 63-66 (1999)
Toru Nakahara 等:“关于两个二次域的某些组合的单位和类数”Proc.Japan Acad.. vol.75 A. 63-66 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Toru Nakahara et al.: "On the unit group and the class number of cetain composita of two real quadratic fields"Manuscripta Math.. (to appear).
Toru Nakahara 等人:“关于两个实二次域的某些组合的单位群和类数”Manuscripta Math..(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ICHIKAWA Takashi其他文献
Developing a Spectrograph for Observing the Atmospheric Emission in K-dark band
开发用于观测 K 暗波段大气发射的光谱仪
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
TSUMURA Kohji;ICHIKAWA Takashi;ITA Yoshifusa - 通讯作者:
ITA Yoshifusa
ICHIKAWA Takashi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ICHIKAWA Takashi', 18)}}的其他基金
Infinite product presentation of the Mumford form and special values of geometric zeta functions
芒福德形式的无限积表示和几何 zeta 函数的特殊值
- 批准号:
26400018 - 财政年份:2014
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Motivic structure of nilpotent completions of modular groups
模群幂零完成的动机结构
- 批准号:
23540021 - 财政年份:2011
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometry of modular varieties and congruence, P-adic theory of Siegel modular forms
模簇和同余的几何,西格尔模形式的 P-adic 理论
- 批准号:
20540018 - 财政年份:2008
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Technology for 2m Infrared Telescope in Antarctica
南极2m红外望远镜技术开发
- 批准号:
18340050 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
New construction of vector bundles on Riemann surfaces and Verlinde's formula
黎曼曲面上向量丛的新构造及Verlinde公式
- 批准号:
18540039 - 财政年份:2006
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
VERTEX OPERATOR ALGEBRAS AND MODULI SPACES OF ALGEBRAIC CURVES
顶点算子代数和代数曲线的模空间
- 批准号:
15540036 - 财政年份:2003
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study on the Evolution of Stellar Mass Distribution at High-z Universe with Multi-Object Infrared Camera and Spectrograph
利用多目标红外相机和摄谱仪研究高z宇宙恒星质量分布演化
- 批准号:
14340059 - 财政年份:2002
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Teichmueller groupoids and monodromy in conformal field theory
共形场论中的 Teichmueller 群群和单峰
- 批准号:
13640031 - 财政年份:2001
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Near-Infrared Mosaic Camera
近红外马赛克相机
- 批准号:
11554005 - 财政年份:1999
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Moduli space of algebraic curves and automorphic forms
代数曲线和自守形式的模空间
- 批准号:
09640047 - 财政年份:1997
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
- 批准号:
EP/X002004/1 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
- 批准号:
DE220100918 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Early Career Researcher Award
The Moduli Space of Foliated Surfaces
叶状曲面的模空间
- 批准号:
EP/X020592/1 - 财政年份:2023
- 资助金额:
$ 2.05万 - 项目类别:
Research Grant
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
- 批准号:
2201314 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Continuing Grant
On a maximal element of a moduli space of Riemannian metrics
关于黎曼度量模空间的最大元素
- 批准号:
22K13916 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2022
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Complex analytic invariants on the moduli space of Riemann surfaces using super Riemann surfaces
使用超级黎曼曲面的黎曼曲面模空间上的复解析不变量
- 批准号:
21K03239 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Characterizing the moduli space of black hole solutions of the Einstein equations
表征爱因斯坦方程黑洞解的模空间
- 批准号:
RGPIN-2018-04887 - 财政年份:2021
- 资助金额:
$ 2.05万 - 项目类别:
Discovery Grants Program - Individual
Asymptotic and global analysis for integrable systems with irregular singularities and various aspects of the moduli space
具有不规则奇点和模空间各个方面的可积系统的渐近和全局分析
- 批准号:
20H01810 - 财政年份:2020
- 资助金额:
$ 2.05万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




