VERTEX OPERATOR ALGEBRAS AND MODULI SPACES OF ALGEBRAIC CURVES

顶点算子代数和代数曲线的模空间

基本信息

  • 批准号:
    15540036
  • 负责人:
  • 金额:
    $ 2.37万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2004
  • 项目状态:
    已结题

项目摘要

(1)Using arithmetic Schottky-Mumford uniformization theory on algebraic curves, we constructed Teichmuller groupoids in the category of arithmetic geometry. By this construction, we gave a partial answer to Grothendieck's conjecture on the associated Galois representations, and described monodromy representations induced from confbrmal field theory.(2)Extending Ullmo-Zhang's results on Bogomolov's conjecture, we gave a condition that a subvariety of an abelian variety defined over a number field is isomorphic to an abelian variety in terms of Neron-Tate's height functions.(3)We described the structure of Riemann surfaces defined from the monodromy representation of hypergeometric differential equations with purely imaginary exponents (joint work with M.Yoshida).(4)We determined the structure of the class groups and unit groups of algebraic number fields of Kummer type, specifically of quartic Dirichlet fields (joint work with K.Katayama and C.Levesque). Further, we investigated the problem of Hasse concerning power integral basis of the ring of algebraic integers (joint work with Y.Motoda).(5)We defined stochastic holonomy operator and the Chern-Simons integral of some product of gauge invariant Wilson loop observables in the Wiener space setting.(6)We studied Buchsbaum Stanley-Reisner rings with linear resolution and characterized them by their multiplicity. Further, we studied the arithmetical rank and determined it for monomial ideals of deviation two.(7)We studied 4-manifolds having flexible surfaces inside, and showed that a lot of simply connected 4-manifolds not the 4-sphere have flexible surfaces. Further, we introduced an operation to alter any surface in a simply connected 4-manifold into a flexible surface.
(1)我们在代数曲线上使用算术Schottky-Mumford统一理论,我们在算术几何形状类别中构建了Teichmuller群。 By this construction, we gave a partial answer to Grothendieck's conjecture on the associated Galois representations, and described monodromy representations induced from confbrmal field theory.(2)Extending Ullmo-Zhang's results on Bogomolov's conjecture, we gave a condition that a subvariety of an abelian variety defined over a number field is isomorphic to an abelian variety in terms of Neron-Tate's height (3)我们描述了根据具有纯粹虚构指数的超几何微分方程的单层表示所定义的riemann表面的结构(与M.Yoshida的联合工作)。(4​​)我们确定了类群的结构,以及Kummer类型的代数组和单位组的单位组,特定于Quartic dirichlet dirichelet and k.kats and C.KATSAID和C.KATEASER and C.KATSAIN和C.C.KATEASEN。 Further, we investigated the problem of Hasse concerning power integral basis of the ring of algebraic integers (joint work with Y.Motoda).(5)We defined stochastic holonomy operator and the Chern-Simons integral of some product of gauge invariant Wilson loop observables in the Wiener space setting.(6)We studied Buchsbaum Stanley-Reisner rings with linear resolution and characterized them by their多重性。此外,我们研究了算术等级,并确定了偏差两个的单一理想。(7)我们研究了内部具有柔性表面的4个manifolds,并表明许多简单地连接的4个manifolds,而不是4个球体具有柔性表面。此外,我们引入了一个操作,以将简单连接的4个manifold中的任何表面更改为柔性表面。

项目成果

期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On Schottky groups arising from the hypergeometric equation with imaginary exponents
关于由虚数指数超几何方程产生的肖特基群
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi Ichikawa;Masaaki Yoshida
  • 通讯作者:
    Masaaki Yoshida
Takashi Ichikawa: "Teichmueller groupoids and Galois action"J.Reine Angew.Math.. 559. 95-114 (2003)
Takashi Ichikawa:“Teichmueller 群群和 Galois 作用”J.Reine Angew.Math.. 559. 95-114 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Susumu Hirose: "A four dimensional analogy of torus links"Topology and its applications. 133. 199-207 (2003)
Susumu Hirose:“环面链接的四维类比”拓扑及其应用。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Itaru Mitoma: "Stochastic Holonomy"Proceedings of the satellite conference of ICM2002 on Stochastic Analysis. (to appear).
Itaru Mitoma:“Stochastic Holonomy”ICM2002 随机分析卫星会议论文集。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Teichmuller groupoids and Galois action
Teichmuller群群和伽罗瓦作用
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Naoki Terai;Hidefumi Osugi;Takayuki Hibi;Takashi Ichikawa
  • 通讯作者:
    Takashi Ichikawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ICHIKAWA Takashi其他文献

Developing a Spectrograph for Observing the Atmospheric Emission in K-dark band
开发用于观测 K 暗波段大气发射的光谱仪
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    TSUMURA Kohji;ICHIKAWA Takashi;ITA Yoshifusa
  • 通讯作者:
    ITA Yoshifusa

ICHIKAWA Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ICHIKAWA Takashi', 18)}}的其他基金

Infinite product presentation of the Mumford form and special values of geometric zeta functions
芒福德形式的无限积表示和几何 zeta 函数的特殊值
  • 批准号:
    26400018
  • 财政年份:
    2014
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Motivic structure of nilpotent completions of modular groups
模群幂零完成的动机结构
  • 批准号:
    23540021
  • 财政年份:
    2011
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometry of modular varieties and congruence, P-adic theory of Siegel modular forms
模簇和同余的几何,西格尔模形式的 P-adic 理论
  • 批准号:
    20540018
  • 财政年份:
    2008
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New construction of vector bundles on Riemann surfaces and Verlinde's formula
黎曼曲面上向量丛的新构造及Verlinde公式
  • 批准号:
    18540039
  • 财政年份:
    2006
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of Technology for 2m Infrared Telescope in Antarctica
南极2m红外望远镜技术开发
  • 批准号:
    18340050
  • 财政年份:
    2006
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the Evolution of Stellar Mass Distribution at High-z Universe with Multi-Object Infrared Camera and Spectrograph
利用多目标红外相机和摄谱仪研究高z宇宙恒星质量分布演化
  • 批准号:
    14340059
  • 财政年份:
    2002
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Teichmueller groupoids and monodromy in conformal field theory
共形场论中的 Teichmueller 群群和单峰
  • 批准号:
    13640031
  • 财政年份:
    2001
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Near-Infrared Mosaic Camera
近红外马赛克相机
  • 批准号:
    11554005
  • 财政年份:
    1999
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Motivic aspect of moduli space of algebraic curves
代数曲线模空间的动机方面
  • 批准号:
    11640035
  • 财政年份:
    1999
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moduli space of algebraic curves and automorphic forms
代数曲线和自守形式的模空间
  • 批准号:
    09640047
  • 财政年份:
    1997
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似国自然基金

声带弹性模量的空间分布特征及其影响发声振动功能的机制研究
  • 批准号:
    82271155
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
辛几何中的开“格罗莫夫-威腾”不变量
  • 批准号:
    10901084
  • 批准年份:
    2009
  • 资助金额:
    16.0 万元
  • 项目类别:
    青年科学基金项目
Deligne-Mumford模空间的拓扑和二维orbifold的弦理论研究
  • 批准号:
    10401026
  • 批准年份:
    2004
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目
岩体原位模量及空间特征研究
  • 批准号:
    40072090
  • 批准年份:
    2000
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似海外基金

Tropical geometry and the moduli space of Prym varieties
热带几何和 Prym 簇的模空间
  • 批准号:
    EP/X002004/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Research Grant
Teichmueller dynamics and the birational geometry of moduli space
Teichmueller 动力学和模空间双有理几何
  • 批准号:
    DE220100918
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Discovery Early Career Researcher Award
The Moduli Space of Foliated Surfaces
叶状曲面的模空间
  • 批准号:
    EP/X020592/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Research Grant
Moduli space of Higgs Bundles
希格斯丛集的模空间
  • 批准号:
    2742617
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Studentship
Invariant Theory, Moduli Space, and Automorphic Representations
不变理论、模空间和自同构表示
  • 批准号:
    2201314
  • 财政年份:
    2022
  • 资助金额:
    $ 2.37万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了