Biomedical measurement using confocal-differential-interference contrast microscope

使用共焦微分干涉显微镜进行生物医学测量

基本信息

  • 批准号:
    13650035
  • 负责人:
  • 金额:
    $ 2.18万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2004
  • 项目状态:
    已结题

项目摘要

The Nomalski type differential interference contrast microscope is widely used in the field of the semiconductor industry and the biomedicine. On the other hand, a laser confocal scanning microscope is excellent in resolution in the vertical direction. First of all, we researched to take quantitative shape data from the differential interference microscope image. This is a method to extract quantitative shape data of the sample from two or more images with a different phase delay of the differential interference microscope. The influence was able to be decreased when a scatterer exist near the object by using this technique. The structure of the tissue of the human skin was able to be observed as an application to the living body measurement. Moreover, as the two or more light source with different wavelength was used, measurement range was able to be expanded though there was a problem that the uncertainty remained in the data when there was an optical path difference more than wavele … More ngth in a conventional interference microscope. In the next, the problem of the confocal microscope was analyzed, and the application of the technique of the phase modulation type differential interference microscope was researched. If the weak phase object is observed by the confocal microscope the discernment or the obscure lines is observed in the edge, and it becomes false-detection of edge shape. The interference of the diffraction light from the edge seems to cause in this effect. The image formation characteristic of the confocal microscope is analyzed by the product of the transfer function of the effect of optical sectioning (I-z characteristic) and the image formation system. Therefore, it has been understood that the peak of image strength is caused at a prescribed spatial frequency in case of the defocus, and the edge emphasis happens as a result. It has been understood that the false-detection in the confocal microscope is able to correct by applying the differentiation interference method which is the phase metrology. As a result, we have a new indicator to develop a microscope to combine confocal and differential microscope to measure a biomedical sample. Less
诺马尔斯基差示干涉显微镜在半导体工业和生物医学领域有着广泛的应用。另一方面,激光共聚焦扫描显微镜在垂直方向上的分辨率很好。首先,我们研究了从差动干涉显微镜图像中获取定量的形状数据。这是一种从具有不同相位延迟的差动干涉显微镜的两幅或多幅图像中提取样品的定量形状数据的方法。利用这种技术,当目标附近存在散射体时,能够减小这种影响。作为活体测量的应用,可以观察到人体皮肤组织的结构。此外,由于使用了两个或多个不同波长的光源,虽然存在光程差大于波长…时数据中存在不确定度的问题,但能够扩大测量范围在传统的干涉显微镜中可以获得更高的分辨率。其次,分析了共焦显微镜存在的问题,研究了位相调制型差动干涉显微镜技术的应用。如果用共焦显微镜观察到微弱的位相物体,就会在边缘观察到可识别或模糊的线条,从而成为边缘形状的误检测。来自边缘的衍射光的干涉似乎导致了这种效应。利用光学切片效应的传递函数(i-z特性)与成像系统的乘积,分析了共焦显微镜的成像特性。因此,可以理解,在散焦的情况下,以规定的空间频率产生图像强度的峰值,并且结果发生边缘加重。据了解,共焦显微镜中的假检测可以通过应用微分干涉法来纠正,这是一种相位计量法。因此,我们有了一种新的指示器来开发一种结合共焦显微镜和差示显微镜来测量生物医学样本的显微镜。较少

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
M.A.El-Morsy et al.: "A subfringe integration method for multiple-beam Fizeau fringe analysis"Opt & Laser Tech.. 35. 223 (2003)
M.A.El-Morsy 等人:“多光束斐索条纹分析的子条纹积分方法”Opt
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Computer simulation of photoinduced mass transport on azobenzene polymer films by particle method
粒子法计算机模拟偶氮苯聚合物薄膜光致传质
多田勇二 他: "新しいシミ計測法の開発"日本化粧品技術者会誌. 35巻4号. 325-332 (2001)
Yuji Tada 等人:“新染色测量方法的开发”日本化妆品工程学会杂志,第 35 卷,第 4. 325-332 期(2001 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A subfringe integration method for multiple-beam Fizeau fringe analysis
  • DOI:
    10.1016/s0030-3992(02)00177-9
  • 发表时间:
    2003-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    M. El-Morsy;K. Harada;M. Itoh;T. Yatagai
  • 通讯作者:
    M. El-Morsy;K. Harada;M. Itoh;T. Yatagai
Color computer-generated holograms from projection images.
  • DOI:
    10.1364/opex.12.002487
  • 发表时间:
    2004-05
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Y. Sando;M. Itoh;T. Yatagai
  • 通讯作者:
    Y. Sando;M. Itoh;T. Yatagai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ITOH Masahide其他文献

ITOH Masahide的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ITOH Masahide', 18)}}的其他基金

Research on X-Ray optics by quasi-crystal pattern
准晶型X射线光学研究
  • 批准号:
    15K13397
  • 财政年份:
    2015
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Sub-wavelength 3-dimentional imaging of biological tissue
生物组织的亚波长三维成像
  • 批准号:
    22560032
  • 财政年份:
    2010
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-dimensional Spectral Analysis for Biomedical Parameters
生物医学参数的多维光谱分析
  • 批准号:
    11650038
  • 财政年份:
    1999
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topographic Imaging by Wavelet Correlation Method
小波相关法地形成像
  • 批准号:
    07650042
  • 财政年份:
    1995
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Confocal microscope
共焦显微镜
  • 批准号:
    538923994
  • 财政年份:
    2024
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Major Research Instrumentation
Live cell spinning disk confocal microscope with single molecule localization module
具有单分子定位模块的活细胞转盘共聚焦显微镜
  • 批准号:
    514497685
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Major Research Instrumentation
Acquisition of Zeiss LSM980 with Airyscan 2, a super-resolution point scanning confocal microscope
购买 Zeiss LSM980 和 Airyscan 2(超分辨率点扫描共焦显微镜)
  • 批准号:
    10632893
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
Acquisition of a Zeiss LSM 900 confocal microscope with Airyscan 2 for an Imaging and Microscopy Core
购买配备 Airyscan 2 的 Zeiss LSM 900 共焦显微镜作为成像和显微镜核心
  • 批准号:
    10632858
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
Multiphoton confocal microscope
多光子共焦显微镜
  • 批准号:
    527484312
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Major Research Instrumentation
A microfluidic system and confocal microscope for the molecular and mechanistic characterisation of microbial biofilms
用于微生物生物膜分子和机械表征的微流体系统和共焦显微镜
  • 批准号:
    BB/X019101/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grant
A multiphoton confocal microscope for deep tissue imaging in live organisms
用于活体深层组织成像的多光子共焦显微镜
  • 批准号:
    BB/X019861/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Research Grant
High resolution confocal microscope
高分辨率共焦显微镜
  • 批准号:
    519044433
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Major Research Instrumentation
Abberior Infinity Line Upright 3D STED/Confocal Microscope
Abberior Infinity Line 正置 3D STED/共焦显微镜
  • 批准号:
    10632948
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
Inverted confocal microscope for life science
用于生命科学的倒置共焦显微镜
  • 批准号:
    517006066
  • 财政年份:
    2023
  • 资助金额:
    $ 2.18万
  • 项目类别:
    Major Research Instrumentation
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了