正則関数空間上の合成作用素のJordan型モデル理論に関する研究

全纯函数空间复合算子Jordan型模型理论研究

基本信息

  • 批准号:
    13740092
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

有限次元空間上の線形作用素は行列として表現され,Jordan標準形の理論は最も基本的で重要なものである.以下,作用素は全て可算無限次元Hilbert空間上の有界線形作用素を意味するものとする.作用素は,有限次元の場合より遥かに複雑な現象とかかわっている.有界な作用素はノルムで割り算すると縮小作用素となり,dilation理論等によって深く研究されているが,Jordan標準形の理論に相当する程の解明は,幾つかの特別なクラスを除いては,遠く達成されていない.一方,具体的な空間の上で具体的に構成される作用素は,構成法に即して研究することができるが,その最も自然で興味深いものの一つは,複素平面の開単位円板上の正則関数をシンボルとする合成作用素である.このとき,合成作用素をノルムで割って縮小作用素にしたものの完全非ユニタリ部分がいわゆるクラスC_0に属するためのシンボルの条件を明らかにし,その時のJordanモデルをシンボルの言葉で明示的に求めることが目的であった.ここで完全非ユニタリな縮小作用素がクラスC_0とは,開単位円板上のある有界正則関数によるSz.Nazy-Foiasのカルキュラスが0となることである.クラスC_0と関連したクラスとしてalgebraicがある.これはある多項式に"代入"すると0となるような作用素のクラスである。上記目的から,複素平面の連結開集合上の荷重合成作用素がalgebraicとなる必要十分条件をシンボルの言葉で求めるという問題が派生した.その条件を,合成と荷重の2つのシンボルの言葉で完全に記述することが出来,その最小多項式も決定された.
The linear action elements in the finite dimensional space are represented by rows and columns, and the Jordan standard form theory is the most basic and important one. Below, the action elements can be regarded as infinite dimensions Hilb The bounded linear action element を on the ert space means するものとする. The action element は, the finite-dimensional field合より远かに富雑なphenomenonとかかわっている.Bounded なacting element はノルムで Cutり reckoning すると reducer factor となり, dilation theory and other によってdeep く research されているが, Jordan standard form の theory に equitable す る 成 の clarification は, a few つ か の special な ク ラ ス を additionいては, distant くreach されていない. One side, the specific なspace の上でspecific に constitute されるThe action element, the composition method, the research, the research, the most natural, the most interesting, the deepest interestのの一つは, complex element plane のopen unit 円 board のregular off number をシンボルとするsynthetic factor It is completely non-functionalユニタリpartがいわゆるクラスC_0にgenするためのシンボルのconditionを明らかにし,その时のJordanモデルをシンボルの言葉でexpressにquestめることがpurposeであった.ここでCompletely non-ユニタリな shrinkage element がクラスC_0とは, open a single board上のあるBounded regular number によるSz.Nazy-Foiasのカルキュラスが0となることである.クラスC_0とrelatedしたクラスとしてalgebraicがある.これはあるpolynomialに"substitute"すると0となるようなactuator のクラスである. For the purpose mentioned above, the load on the complex element plane connected to the open set requires very special conditions to synthesize the algebraic element. The derivation of the problem. The condition of the synthesis, the synthesis of the load of 2 and the complete description of the load, the minimum polynomial determination of the problem.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sin-Ei Takahasi, Osamu Hatori, Keiichi Watanabe, Takeshi Miura: "A note on a class of Banach algebra-valued polynomials"International Journal of Mathematics and Mathematical Sciences. Vol.32 No.3. 189-192 (2002)
Sin-Ei Takahasi、Osamu Hatori、Keiichi Watanabe、Takeshi Miura:“关于一类 Banach 代数值多项式的注释”国际数学与数学科学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

渡邉 恵一其他文献

官営八播製鉄所における鉱石輸送
官营矢张制钢所的矿石运输
団琢磨と民間経済外交-英米実業団視察団(1911年)とその意義-
琢马团与民间经济外交——英美商业集团视察团(1911年)及其意义——
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kikkawa;Yo;大島 久幸;高龍秀;松本 和明;高龍秀;松本 和明;服部民夫;高 宇;安倍 誠;渡邉 恵一;Keiichi Watanabe;服部民夫;老川 慶喜;由井常彦
  • 通讯作者:
    由井常彦
戦間期における食料品生産・流通環境の変化と企業対応
两次世界大战期间食品生产和流通环境的变化及企业应对
織物買継商の活動と地域経済-木村半兵衛と足利織物業界-
纺织品采购商的活动和地方经济 - 木村半兵卫和足利纺织工业 -
The Physical Distribution History of Asano Cement Company
浅野水泥公司的物流历史
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kikkawa;Yo;大島 久幸;高龍秀;松本 和明;高龍秀;松本 和明;服部民夫;高 宇;安倍 誠;渡邉 恵一;Keiichi Watanabe
  • 通讯作者:
    Keiichi Watanabe

渡邉 恵一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('渡邉 恵一', 18)}}的其他基金

ジャイロベクトル空間の関数解析的研究
陀螺矢量空间的泛函分析研究
  • 批准号:
    21K03288
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
近代日本における木材の市場と輸送選択-吉野材を事例として-
现代日本的木材市场和运输选择 - 以吉野木材为例 -
  • 批准号:
    21K01604
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
近代日本における企業経営の物流史的研究
近代日本企业管理的物流史研究
  • 批准号:
    14730059
  • 财政年份:
    2002
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
非可換L^p空間上の等距離作用素の構造の研究
非交换L^p空间上等距算子结构的研究
  • 批准号:
    11740107
  • 财政年份:
    1999
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
戦前期日本の工業化と輸送問題
战前日本的工业化和交通问题
  • 批准号:
    09730053
  • 财政年份:
    1997
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非可換積分論と非可換次元論の研究
非交换积分理论和非交换维数理论研究
  • 批准号:
    06740105
  • 财政年份:
    1994
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非可換積分論と対称ノルム両側加群の研究
非交换积分理论与对称范数两侧模研究
  • 批准号:
    04740070
  • 财政年份:
    1992
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

Hardy空間とBergman空間の間の荷重合成作用素の研究
Hardy空间与Bergman空间权重合成算子研究
  • 批准号:
    21K03285
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
荷重合成作用素の保存構造の研究
权重复合算子的保守结构研究
  • 批准号:
    15K04897
  • 财政年份:
    2015
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
関数空間上の荷重合成作用素について
关于函数空间上的权重复合算子
  • 批准号:
    05740087
  • 财政年份:
    1993
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了