有限グラフの高次連結度の計算とベッチ数列の消滅理論

有限图的高阶连通性计算和Betti序列的消失理论

基本信息

  • 批准号:
    09874047
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1999
  • 项目状态:
    已结题

项目摘要

平成11年度は,いわゆるcompressedな凸多面体についての基礎理論を構築することを念頭に置いて研究を継承した.その基盤となる作業仮説「一般の超単体はcompressedである」を証明することを基礎理論を構築するための突破口と考え,思索を重ねた結果,Birkhoff-von Neumann凸多面体に付随するtoricイデアルが任意の逆辞書式順序でsquarefreeなinitialイデアルを持つという顕著な成果を整数計画の枠内で捕らえることの有効性に到達した.一般に,凸多面体は有限個の不等式で定義されるが,それらの不等式がすべて等式になっている状況にしばしば遭遇する.我々が得た重要な成果の一つは「すべての頂点のすべての座標成分が0乃至1である凸多面体が等式によって定義されるならば,その凸多面体はcompressedである」という至って簡潔な定理であるが,その波及する効果は絶大である.第1点として,その直接の帰結として懸案であった上記作業仮説が直ちに証明できることが挙げられる.第2点として,perfectな有限グラフの理論を借用すると,たとえば,純な有限半順序集合に付随する凸多面体がcompressedであるという鮮やかな結果が瞬時に従う.第3点として,当該定理の仮定で要求される等式の部分はいささか工夫を施すことによって,適当な条件を満たす不等式に置き換えることが可能である.その結果,有限半順序集合から構成される順序凸多面体などの類についても当該定理が有効となり,compressedな凸多面体の著名な類を大量に生産することが可能となる.将来的には,第2点で触れた perfect な有限グフラフについての永年の予想(強perfectグラフ予想)の解決に向けて,我々の構築しつつある理論の応用を探ることも重要な課題である.
Basics of compressed convex polyhedron in 2011 Theoretical construction, thought building, research, foundation and homework 「General super unit bodyはcompressedである」をProofすることをBasic theoryをConstructionするためのBreakthroughとtestえ, Thoughtを重ねたresults, Birkhoff-von Neumann's convex polyhedron is the result of the inverse dictionary order of Neumann's convex polyhedron. The validity of the integer plan is achieved by the validity of the integer plan. Generally, the convex polyhedron is A finite number of inequalities are defined, including inequalities, equations, and inequalities. The situation has been met. I have obtained important results and achieved the highest results.べてのCoordinate componentsが0 or even 1であるconvex polyhedronがequationによってDefinitionされるならば,そのconvex polyhedronはcompressedである』という to ってsimple な theorem であるが, その动与するeffect は大である. Point 1 として, そのDirect の帰 knot としてUncensored Casesして, perfectなlimitedグラフのtheoryをborrowedすると,たとえば,pure limited The semi-ordered set is a convex polyhedron that is compressed and the result is instantaneous. The third point is that when the theorem is determined, the required part of the equation isはいささか工夫を时すことによって, appropriate な condition を満たすinequality にSETきchangeえることがpossibleである.その result, the finite semi-ordered set から constitutes a されるordered convex polyhedron When the theorem is valid, compressed convex polyhedron It is possible to produce famous products in large quantities. Future products, point 2 is the same. perfect The solution to the problem of limited time and space (strong perfection)に向けて, I 々のconstruct the theory and use it to explore important topics.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A. Aramova: "Squarefree lexsegment Edeals" Math. Z. 228. 353-378 (1998)
A. Aramova:“Squarefree lexsegment Edeals”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
N.Terai: "Finite tree resolutions and '1-skeletans of simplical complexes" Journal of Algebraic Conbinatorics. 6. 89-93 (1997)
N.Terai:“有限树解析和单纯复形的 1-骨架”代数组合学杂志。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ohsugi,T.Hibi: "Toric ideals generated by Quadratic binomials"J. Algebra. 218. 509-527 (1999)
H.Ohsugi,T.Hibi:“由二次二项式生成的环理想”J。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T. Hibi: "A comparability graph of a modular lattice" Combinatorica. (出版予定). (1999)
T. Hibi:“模块化格子的可比图”Combinatorica(即将出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
H.Ohsugi,T.Hibi: "Koszul bipartite graphs"Advances in Applied Math,. 22. 25-28 (1999)
H.Ohsugi,T.Hibi:“Koszul 二分图”应用数学进展,。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

日比 孝之其他文献

基本的な動きを育てる(1)
发展基本动作 (1)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Abe;K. Nuida;and Y. Numata;Mutsumi Saito;Mutsumi Saito;齋藤 睦;柳川浩二;Ichiro Shimada;Y. Numata;Mutsumi Saito;Mutsumi Saito;K. Yanagawa;齋藤 睦;齋藤 睦;Hiroshi Yamashita;Y. Numata;Ichiro Shimada;Y. Numata;K. Yanagawa;Hiroshi Yamashita;Mutsumi Saito;柳川浩二;柳川浩二;Ichiro Shimada;Mutsumi Saito;齋藤 睦;山下 博;齋藤 睦;山下 博(述)阿部紀行(記);齋藤 睦;日比 孝之;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子
  • 通讯作者:
    飯村敦子
とぶ力を育てる
发展飞行能力
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Abe;K. Nuida;and Y. Numata;Mutsumi Saito;Mutsumi Saito;齋藤 睦;柳川浩二;Ichiro Shimada;Y. Numata;Mutsumi Saito;Mutsumi Saito;K. Yanagawa;齋藤 睦;齋藤 睦;Hiroshi Yamashita;Y. Numata;Ichiro Shimada;Y. Numata;K. Yanagawa;Hiroshi Yamashita;Mutsumi Saito;柳川浩二;柳川浩二;Ichiro Shimada;Mutsumi Saito;齋藤 睦;山下 博;齋藤 睦;山下 博(述)阿部紀行(記);齋藤 睦;日比 孝之;飯村敦子;飯村敦子;飯村敦子
  • 通讯作者:
    飯村敦子
バランスの力を育てる(1)
发展平衡力(1)
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Abe;K. Nuida;and Y. Numata;Mutsumi Saito;Mutsumi Saito;齋藤 睦;柳川浩二;Ichiro Shimada;Y. Numata;Mutsumi Saito;Mutsumi Saito;K. Yanagawa;齋藤 睦;齋藤 睦;Hiroshi Yamashita;Y. Numata;Ichiro Shimada;Y. Numata;K. Yanagawa;Hiroshi Yamashita;Mutsumi Saito;柳川浩二;柳川浩二;Ichiro Shimada;Mutsumi Saito;齋藤 睦;山下 博;齋藤 睦;山下 博(述)阿部紀行(記);齋藤 睦;日比 孝之;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子;飯村敦子
  • 通讯作者:
    飯村敦子
Algebraic combinatorics on convex polytopes
凸多胞形上的代数组合
  • DOI:
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日比 孝之
  • 通讯作者:
    日比 孝之
エッジイデアルの extremal ベッチ数
理想边缘的极值投注数
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    日比 孝之;木村 杏子;松田 一徳
  • 通讯作者:
    松田 一徳

日比 孝之的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('日比 孝之', 18)}}的其他基金

多項式環のシチジー理論を戦略とするグラフ理論の古典論の再編と現代的潮流の誕生
以多项式环理论为策略的图论经典理论的重组及现代趋势的诞生
  • 批准号:
    20KK0059
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
シチジー理論とシンボリック冪の現代的潮流を踏襲する可換環論の戦略的研究の展開
顺应citigi理论和符号幂的现代潮流开展交换环理论的战略研究
  • 批准号:
    19H00637
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
ポリオミノに付随する二項式イデアルの代数的及び組合せ論的探究
与多项骨牌相关的二项式理想的代数和组合探索
  • 批准号:
    14F04318
  • 财政年份:
    2014
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
アルゴリズム的な着想によるg予想の肯定的な解決への挑戦
使用算法思想积极解决g猜想的挑战
  • 批准号:
    18654020
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
計算可換代数と計算代数幾何についての国際研究集会の企画調査
计算交换代数与计算代数几何国际研究会议的策划与研究
  • 批准号:
    18634001
  • 财政年份:
    2006
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
グレブナー基底の理論的有効性と実践的有効性に関する共同研究の企画調査
格罗布纳基础的理论和实践有效性联合研究的规划和调查
  • 批准号:
    17634001
  • 财政年份:
    2005
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
グレブナー基底の理論的有効性と実践的有効性についての国際研究集会の企画調査
格罗布纳基础的理论和实践有效性国际研究会议的策划和调查
  • 批准号:
    15634001
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
強パーフェクトグラフ予想と逆辞書式イニシャルイデアルの研究
强完美图猜想与逆字典序初始理想研究
  • 批准号:
    14654022
  • 财政年份:
    2002
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
凸多面体を巡る組合せ数学の代数的諸相についての国際研究集会の企画調査
凸多面体组合数学代数方面国际研究会议的策划与研究
  • 批准号:
    14604002
  • 财政年份:
    2002
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
有限半順序集合の組合せ論における代数的基礎理論の研究
有限偏序集组合学代数基础理论研究
  • 批准号:
    08640033
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

可換環論と離散幾何学による有限グラフに付随するトーリック環の解析
使用交换环理论和离散几何分析与有限图相关的复曲面环
  • 批准号:
    23KJ2117
  • 财政年份:
    2023
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
有限グラフに付随するGorenstein Fano凸多面体のEhrhart多項式
附加到有限图的 Gorenstein Fano 凸多面体的 Ehrhart 多项式
  • 批准号:
    11J00592
  • 财政年份:
    2011
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了