場の理論と表現論

场论和表示论

基本信息

  • 批准号:
    17740006
  • 负责人:
  • 金额:
    $ 2.24万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

1.主幕零軌道に付随するW代数の既約表現の指標を決定した論文(Tomoyuki Arakawa, Representation Theory of W-Algebras, Invent. Math., Vol. 169 (2007), no. 2, 219-320)が出版された。2.臨界レベルのアフィンリー環の既約表現の指標の導出は現在未解決問題だが、我々はW代数のアフィンリー環の表現への応用として、臨界レベルにおける既約表現の指標公式を(ウエイトの古典部分が整支配的な場合に)導出した。この結果はプレプリント(Characters of representations of affine Kac-Moody Lie algebras at the critical level, arXiv:0706.1817v2 [math.QA])としてアナウンスを行った。Full paperは現在準備中である。3.研究代表者によって得られていたW代数の表現論に関する結果(1の論文の結果)を、一般のベキ零軌道に付随するW代数へ(ある程度)拡張した。特にA型の場合に、モヂュラー不変な表現の存在と構成に関するKac-脇本の予想を解決した。当該結果は現在雑誌に投稿中である(プレプリントはRepresentation theory of W-algebras, II: Ramond twisted representations, arXiv:0802. 1564v1 [math.QA]).
1. Tomoyuki Arakawa, Representation Theory of W-Algebras, Invent. Math., Vol. 169 (2007), no. 2, 219-320). 2. The derivation of the performance index of the critical loop has not been solved yet. The derivation of the performance index formula of the critical loop (in the case where the classical part of the critical loop is dominated by integration) has not been solved yet. The results of this study are as follows: (Characteristics of representatives of affine Kac-Moody Lie algebras at the critical level, arXiv:0706.1817v2 [math.QA]) Full paper is now ready. 3. The representative of the study obtained the results of the expression theory of W algebras (the results of the paper 1) and the general zero orbit of W algebras (the degree of W algebras). In particular, in the case of type A, the existence and composition of Kac-stress elements are expected to be resolved. When the results are presented in the journal Submission theory of W-algebras, II: Ramond twisted representations, arXiv:0802. 1564v1 [math.QA]).

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A New Proof of the Kac-Kazhdan Conjecture
Kac-Kazhdan猜想的新证明
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    船曳康子;岡田俊;十一元三;上野 耕平;上野 耕平;上野耕平;上野耕平;上野 耕平;徳永幹雄(編);平沼 博将;平沼 博将;荒木寿友 (共著);Yoshihisa Saito and Midori Shiota;Yoshihisa Saita;平賀 健太郎;Tomoyuki Arakawa;Tomoyuki Arakawa
  • 通讯作者:
    Tomoyuki Arakawa
Representation Theory of Superconformal Algebras and the Kac-Roan-Wakimoto Conjecture
  • DOI:
    10.1215/s0012-7094-05-13032-0
  • 发表时间:
    2004-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Arakawa
  • 通讯作者:
    T. Arakawa
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

荒川 知幸其他文献

Towards primitive forms of type $A_{\frac{1}{2}\infty}$ and $D_{\frac{1}{2}\infty}$
朝向 $A_{frac{1}{2}infty}$ 和 $D_{frac{1}{2}infty}$ 类型的原始形式
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyoji Saito;荒川 知幸;Kyoji Saito
  • 通讯作者:
    Kyoji Saito
Thermodynamical limit functions for cancellative monoids
消除幺半群的热力学极限函数
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyoji Saito;荒川 知幸;Kyoji Saito;井上昭彦;Tomoyuki Arakawa;井上昭彦・M. Pourahmadi・笠原雪夫;Kyoji Saito;Tomouki Arakawa;井上昭彦;Tomoyuki Arakawa;Kyoji Saito;井上昭彦;Tomoui Arakawa;Kyoji Saito;荒川 知幸;笠原雪夫;Kyoji Saito
  • 通讯作者:
    Kyoji Saito
OPUC associated with a rigid function (3)
与刚性功能相关的 OPUC (3)
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kyoji Saito;荒川 知幸;Kyoji Saito;井上昭彦;Tomoyuki Arakawa;井上昭彦・M. Pourahmadi・笠原雪夫;Kyoji Saito;Tomouki Arakawa;井上昭彦;Tomoyuki Arakawa;Kyoji Saito;井上昭彦;Tomoui Arakawa;Kyoji Saito;荒川 知幸;笠原雪夫;Kyoji Saito;Kyoji Saito;笠原雪夫;荒川 知幸;Kyoji Saito;荒川 知幸;井上昭彦;Kyoji Saito;荒川 知幸;井上昭彦;Kyoji Saito;Tomoyuki Arakawa;井上昭彦;Kyoji Saito;A. Matuso;笠原雪夫;Kyoji Saito;A. Matsuo;笠原雪夫
  • 通讯作者:
    笠原雪夫
Conformally flat Fefferman-Lorentz manifold and Obata and Ferrand Rigidity
共形平面 Fefferman-Lorentz 流形以及 Obata 和 Ferrand 刚度
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    井筒勝信;田実潔;Kyoji Saito;森 重文;荒川 知幸;神島芳宣
  • 通讯作者:
    神島芳宣
アフィン W 代数をめぐって ー表現論とヒック?ス枝予想ー
关于仿射W代数-表示论和希克斯分支猜想-
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    ARAKAWA T.;PREMET A.;ARAKAWA Tomoyuki;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;Arakawa Tomoyuki;荒川 知幸;Arakawa Tomoyuki;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;荒川 知幸;Tomoyuki Arakawa;荒川 知幸;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;Tomoyuki Arakawa;荒川 知幸;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;ARAKAWA Tomoyuki;荒川 知幸
  • 通讯作者:
    荒川 知幸

荒川 知幸的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('荒川 知幸', 18)}}的其他基金

Representation theory of vertex algebras for the 21st century
21世纪顶点代数表示论
  • 批准号:
    21H04993
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
二次元及び四次元の共型場理論に付随した頂点作用素代数の構成と分類
与二维和四维共形场论相关的顶点算子代数的构造和分类
  • 批准号:
    20F20018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
二次元及び四次元の共型場理論に付随した頂点作用素代数の構成と分類
与二维和四维共形场论相关的顶点算子代数的构造和分类
  • 批准号:
    20F40018
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
W代数とその応用
W代数及其应用
  • 批准号:
    17H01086
  • 财政年份:
    2017
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)

相似海外基金

頂点代数上の加群の拡張
顶点代数模块的扩展
  • 批准号:
    24K06655
  • 财政年份:
    2024
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
頂点代数の幾何学的表現論
顶点代数的几何表示论
  • 批准号:
    23KJ1120
  • 财政年份:
    2023
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
W3代数を生成系とする頂点代数とその対称性の研究
以W3代数为生成系统研究顶点代数及其对称性
  • 批准号:
    22K03252
  • 财政年份:
    2022
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
頂点代数上の加群の拡張とテンソル積
顶点代数上的模和张量积的扩展
  • 批准号:
    21K03172
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
頂点代数のコセットの構造の研究
顶点代数陪集结构的研究
  • 批准号:
    21K13775
  • 财政年份:
    2021
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
W-Algebras and Universal Objects in Vertex Algebra Theory
顶点代数理论中的 W 代数和通用对象
  • 批准号:
    2001484
  • 财政年份:
    2020
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
a generalization of the notion of a module for a vertex algebra
顶点代数模块概念的推广
  • 批准号:
    18K03198
  • 财政年份:
    2018
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New developments of vertex algebra theory
顶点代数理论的新进展
  • 批准号:
    23654006
  • 财政年份:
    2011
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Proposal on International Conferences on Vertex Algebra and Related Topics
关于顶点代数及相关主题国际会议的提案
  • 批准号:
    1042747
  • 财政年份:
    2010
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Continuing Grant
Algebraic and Number Theoretic Aspects of Vertex Algebra Theory
顶点代数理论的代数和数论方面
  • 批准号:
    0802962
  • 财政年份:
    2008
  • 资助金额:
    $ 2.24万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了