クラスター代数の圏論化と歪対称化可能な場合への拡張
簇代数的范畴理论化和可斜对称情况的推广
基本信息
- 批准号:10F00723
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2010
- 资助国家:日本
- 起止时间:2010 至 2012
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
2012年度の特別研究員の主要な研究テーマは、ポテンシャル付き箙(クイバー)の「複数頂点における変異」である。Derksen-Weyman-Zelevinskyは、ポテンシャル付き箙の(一つの頂点における)変異を導入し、団(クラスター)代数の圏論化に応用した。ポテンシャル付き箙の変異は非常に初等的な操作であるが、ある種の2カラビ・ヤウ三角圏における団傾対象の圏論的変異による自己準同型環の変化の記述をも与える。ゆえにポテンシャル付き箙の「一頂点における変異」を一般化した「複数頂点における変異」を定式化することは、団代数や団傾対象全体の持つ組み合わせ論的構造のより良い理解につながる重要な研究テーマである。これに対して特別研究員は「複数頂点における変異」の定式化を与えており、さらに団傾対象の圏論的変異との互換性を、ポテンシャル付き箙がある種の最長緑列を持つ場合に示した。またポテンシャル付き箙が曲面の三角形分割から生じる場合に対しては、組み合わせ論的観点から期待される結果と一致することも確かめた。特別研究員の与えた定式化は、箙の部分に関しては最終的なものであると思われるが、ポテンシャルの部分に関してはさらなる考察が必要であると思われる。研究員は以上の研究成果に関して、ビーレフェルト大学で開かれた「Workshop and International Conferepce on Representations of Algebras(ICRA 2012)」および信州大学で開かれた「45th Symposium on Ring Theory and Representation Theory」での講演において公表を行った。特別研究員はさらに、曲面の三角形分割に対してLuoが導入した「ポテンシャル付き氷箙」のヤコビ多元環を調べた。特別な場合に、ヤコビ多元環が1変数多項式環上の整環となることを証明した。さらにヤコビ多元環のある特定の部分整環の団(クラスター)傾加群の全体と、三角形分割の全体の間に一対一対応が存在することを証明した。
2012 Special Fellow's main research topic: "Complex vertex variation" Derksen-Weyman-Zelevinsky is a kind of algebra theory. A description of the transformation of a quasi-isotypic ring is given in the context of a very elementary operation. However, the generalization of "variation at one vertex" and the formalization of "variation at a plurality of vertices" in the complex equation are important research topics for a good understanding of the construction of the group theory of algebra and the whole object. The special researcher has demonstrated the formalization and interchangeability of the variation of the theory of multiple vertices and the longest green column of each species. For example, if a triangle partition of a curved surface occurs, the result of the triangle partition is consistent with the result of the triangle partition of the curved surface. Special researcher's research is necessary for the final analysis. The researcher gave a presentation on the results of the above research, entitled "Workshop and International Conference on Representatives of Algebras(ICRA 2012)" at Shinshu University and "45th Symposium on Ring Theory and Representation Theory" at Shinshu University. Special researchers have introduced the concept of "multi-dimensional ring" in the triangle division of curved surfaces. In particular, the proof of an integral ring over a multi-dimensional ring with 1 is given. This paper proves the existence of a pair of pairs between all of a certain partial integral ring and a triangular partition.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Example of categorification of a cluster algebra
簇代数的分类示例
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Laurent Demonet;Yu Liu;Laurent Demonet
- 通讯作者:Laurent Demonet
Mutations of quiver with potential at several vertices
在多个顶点具有潜力的箭袋突变
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:A.Ceklovsky;S.Takagi;J.Bujdak;Demonet Laurent
- 通讯作者:Demonet Laurent
Quotients of exact categories by cluster tilting subcategories as module categories
- DOI:10.1016/j.jpaa.2013.03.007
- 发表时间:2012-08
- 期刊:
- 影响因子:0.8
- 作者:Laurent Demonet;Y. Liu
- 通讯作者:Laurent Demonet;Y. Liu
Categorification of cluster algebra structures of coordinate rings of Grassmanian varieties through representations of preprojective algebras
通过预投影代数的表示对格拉斯曼簇坐标环的簇代数结构进行分类
- DOI:
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Shinsuke Takagi;Saki Konno;Yohei Ishida;Alexander Ceklovsky;Dai Masui;Tetsuya Shimada;Hiroshi Tachibana;Haruo Inoue;Demonet Laurent;Demonet Laurent
- 通讯作者:Demonet Laurent
Categorification of skew-symetrizable cluster algebras
偏斜对称簇代数的分类
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Shinsuke Takagi;Saki Konno;Yohei Ishida;Alexander Ceklovsky;Dai Masui;Tetsuya Shimada;Hiroshi Tachibana;Haruo Inoue;Demonet Laurent;Demonet Laurent;Demanet Laurent;Demonet Laurent;Laurent Demonet;Laurent Demonet;Laurent Demonet;Laurent Demonet;Laurent Demonet
- 通讯作者:Laurent Demonet
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
伊山 修其他文献
Generalized complex structures on 4-manifolds and generalized hyperkaehler structures
4 流形上的广义复结构和广义超凯勒结构
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Hoshino;N. Kameyama and H. Koga;Ryushi Goto;森重文;足立 崇英;R. Goto;森重文;毛利 出;伊山 修;R. Goto;森重文;越谷重夫;後藤竜司;森重文;伊山 修;後藤竜司;Shigefumi Mori;毛利 出;R. Goto;伊山 修;R. Goto;Shigefumi Mori;佐藤眞久;Shigefumi Mori;R. Goto;浅芝 秀人;Shigefumi Mori;伊山 修;R. Goto - 通讯作者:
R. Goto
Preprojective algebras and τ-tilting theory
原投影代数和 τ-倾斜理论
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
伊山 修;越谷重夫;Mayumi Kimura;Osamu Iyama;水野有哉;Osamu Iyama;浅芝 秀人;Osamu Iyama;浅芝 秀人;浅芝 秀人;Osamu Iyama;浅芝 秀人;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;浅芝 秀人;Shigeo Koshitani;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Shigeo Koshitani;浅芝 秀人;Mayumi Kimura;Izuru Mori;水野有哉;中島健,浅芝秀人;Osamu Iyama;相原琢磨;浅芝 秀人;Osamu Iyama;Izuru Mori;水野有哉 - 通讯作者:
水野有哉
自己入射的ポテンシャル付き箙とその変異
具有自注入潜力的箭袋及其突变
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
伊山 修;越谷重夫;Mayumi Kimura;Osamu Iyama;水野有哉;Osamu Iyama;浅芝 秀人;Osamu Iyama;浅芝 秀人;浅芝 秀人;Osamu Iyama;浅芝 秀人;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;浅芝 秀人;Shigeo Koshitani;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Shigeo Koshitani;浅芝 秀人;Mayumi Kimura;Izuru Mori;水野有哉;中島健,浅芝秀人;Osamu Iyama;相原琢磨;浅芝 秀人;Osamu Iyama;Izuru Mori;水野有哉;Osamu Iyama;浅芝 秀人;Shigeo Koshitani;Osamu Iyama;水野有哉;Shigeo Koshitani;浅芝 秀人;Osamu Iyama;Osamu Iyama;Hideto Asashiba;Mayumi Kimura;Hideto Asashiba;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Shigeo Koshitani;Izuru Mori and Kenta Ueyama;Yuya Mizuno - 通讯作者:
Yuya Mizuno
Feigin-Frenkel, Adamovic-Milas, and Frenkel-Kac-Wakimoto
Feigin-Frenkel、Adamovic-Milas 和 Frenkel-Kac-Wakimoto
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
板場 綾子;金加喜;Tomoyuki Arakawa;伊山 修;荒川 知幸;浅芝 秀人;Tomoyuki Arakawa;伊山 修;Hiromichi Yamada;伊山 修;山内 博;板場 綾子;Tomoyuki Arakawa - 通讯作者:
Tomoyuki Arakawa
伊山 修的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('伊山 修', 18)}}的其他基金
整環の表現論の傾理論による深化
利用倾斜理论深化代数的表示理论
- 批准号:
23K22384 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Deepening representation theory of orders by tilting theory
利用倾斜理论深化阶次表示理论
- 批准号:
22H01113 - 财政年份:2022
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tilting complex and Perverse equivalence in Representation theory
表示论中的倾斜复数与反常等价
- 批准号:
17F17814 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
曲面の組合せ論によるブラウアーグラフ代数の導来圏の研究
利用表面组合学研究布劳尔图代数的派生范畴
- 批准号:
17F17019 - 财政年份:2017
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
準傾複体とBridgeland安定性条件による導来圏の研究
使用准倾斜复合体和布里奇兰稳定性条件研究派生类别
- 批准号:
12F02318 - 财政年份:2012
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
多元環の表現論。特にクイバー表現のテンサー積と導来圏
多维环的表示论。
- 批准号:
08F08787 - 财政年份:2008
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似海外基金
REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
- 批准号:
2349684 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
- 批准号:
2400006 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
- 批准号:
2401360 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
- 批准号:
24K06659 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
- 批准号:
2342254 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
- 批准号:
2416063 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
- 批准号:
2337178 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
- 批准号:
2338655 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
- 批准号:
2414922 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant














{{item.name}}会员




