非結合的な単純代数の構造論

非结合简单代数的结构理论

基本信息

  • 批准号:
    11F01753
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

特別研究員は、昨年度に引き続き、受け入れ研究者と共同で自己入射多元環の高次元Auslander-Reiten理論を研究した。多元環の表現論では、有限表現型と呼ばれる、直既約加群を有限個しか持たないクラスが重要である。箙(クイバー)の道多元環(pathalgebra)に対しては、古典的なGabrie1の定理によって、有限表現型とはADE型のディンキン箙に他ならないことが知られている。一方、道多元環とは別の重要なクラスとして、有限群の群環や0次元の可換Gorenstein環をはじめとする自己入射多元環(selfinjective algebra, Frobenius algebra)がある。自己入射多元環に対しては、Riedtmannによって有限表現型の分類がなされており、それらはADE型ディンキン箙の傾多元環(tilted algebra)の、反復多元環(repetitive algebra)の自己同型による軌道圏であることが知られている。高次元Auslander-Reiten理論においては、有限表現型多元環の高次元化であるn有限表現型多元環が重要である。これはn団傾加群(n-cluster tilting module)と呼ばれる特別な加群を持っことによって定義されるクラスであり、通常の有限表現型とは1有限表現型に他ならない。大域次元がnであるn有限表現型多元環は、簸の道多元環の高次元化を与えるものであり、受け入れ研究者やHerschend, Oppermannによってポテンシャル付き箙や前射影多元環を用いて研究されている。特別研究員は受け入れ研究者と共同で、〃有限表現型であるような自己入射多元環の一般的な構成方法を発見した。具体的には「τ-n有限性」を満たす多元環の反復多元環の自己同型による軌道圏が、n有限表現型の自己入射多元環であることを証明した。n1の場合、τ_1有限性とは、ADE型ディンキン箙であることに他ならないため、我々の構成は、上で述べたRiedtmamの構成の一般化とみなされる。現時点で知られているn有限表現型の自己入射多元環はすべて、この方法により再構成することが可能であり、さらに数多くの新しい例を得ることができる。現在、これらの研究成果をまとめた論文を準備中である。
Special researcher, last year's researcher, Haruyoshi, and researcher, jointly researched the high-dimensional Auslander-Reiten theory of self-injection into multiple rings. The expression theory of polycyclic rings, the limited expression type, and the limited number of simple addition groups are important.箙(クイバー)の道multiple ring(pathalgebra)に対しては、ClassicalなGabrie1 Theorem によって, finite expression type ADE type のディンキン箙にhim ならないことが知られている. On one side, the road polycyclic ring is important, the finite group ring is 0-dimensional, and the Gorenstein ring is replaceable. Self-injection polycyclic ring に対しては, Riedtmann finite phenotype のclassification がなされており, ADE type ディンキン箙のtilted polycyclic ring (tilted algebra), repetitive polycyclic ring (repetitive algebra) is the same type of orbital circle, it is known as the same type. The high-dimensional Auslander-Reiten theory is a high-dimensional one, and the limited-expression polycyclic ring is a high-dimensional one. The finite-expression polycyclic ring is important. n-cluster tilting module) とcall ばれるspecial な加群をhold っことによってDefinition されるクラスであり, usually のlimited expression type とは1 limited expression type にhim ならない. Herschend, the researcher of the large domain dimension limited expression polycyclic ring, the high-dimensionalization of the multi-dimensional ring and the high-dimensional polycyclic ring, and the subject of the research, Oppermann's によってポテンシャルpay き箙やfront projective polycyclic ring いて research されている. The special researcher is a common researcher, and the limited expression type is a general structure method of injecting a polycyclic ring by himself. Specifically, "τ-n finiteness" is proved by the repeated polycyclic ring of the polycyclic ring, the self-isolated orbital ring of the same type, and the self-incident polycyclic ring of the n-limited phenotype. n1 case, τ_1 finite とは, ADE type ディンキン箙であることに他ならないため、我々の constitute は、The above mentioned べたRiedtmamの constitute the generalization とみなされる. The current point of knowledge is limited to the self-injection multi-ring of the limited expression type, and the method is to use it.することがpossibleであり、さらに多くの新しい examplesをgetることができる. Currently, the research results and thesis are being prepared.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of the four-dimensional power-commutative real division algebras
四维幂交换实除代数的分类
Decomposing tensor products for cyclic and dihedral groups
循环群和二面体群的张量积分解
Space-time codes and division algebras
时空码和除法代数
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Darpoe;Abdellatif Rochdi;Erik Darpoe
  • 通讯作者:
    Erik Darpoe
Loewy lengths of tensor products of kD_21-modules
kD_21-模张量积的 Loewy 长度
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Darpoe;Abdellatif Rochdi;Erik Darpoe;Erik Darpoe;Erik Darpoe;Erik Darpoe
  • 通讯作者:
    Erik Darpoe
The Loewy length of a tensor product of modules of a dihedral two-group
二面体群模的张量积的 Loewy 长度
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Darpoe;Abdellatif Rochdi;Erik Darpoe;Erik Darpoe
  • 通讯作者:
    Erik Darpoe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

伊山 修其他文献

Generalized complex structures on 4-manifolds and generalized hyperkaehler structures
4 流形上的广义复结构和广义超凯勒结构
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hoshino;N. Kameyama and H. Koga;Ryushi Goto;森重文;足立 崇英;R. Goto;森重文;毛利 出;伊山 修;R. Goto;森重文;越谷重夫;後藤竜司;森重文;伊山 修;後藤竜司;Shigefumi Mori;毛利 出;R. Goto;伊山 修;R. Goto;Shigefumi Mori;佐藤眞久;Shigefumi Mori;R. Goto;浅芝 秀人;Shigefumi Mori;伊山 修;R. Goto
  • 通讯作者:
    R. Goto
Preprojective algebras and τ-tilting theory
原投影代数和 τ-倾斜理论
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;越谷重夫;Mayumi Kimura;Osamu Iyama;水野有哉;Osamu Iyama;浅芝 秀人;Osamu Iyama;浅芝 秀人;浅芝 秀人;Osamu Iyama;浅芝 秀人;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;浅芝 秀人;Shigeo Koshitani;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Shigeo Koshitani;浅芝 秀人;Mayumi Kimura;Izuru Mori;水野有哉;中島健,浅芝秀人;Osamu Iyama;相原琢磨;浅芝 秀人;Osamu Iyama;Izuru Mori;水野有哉
  • 通讯作者:
    水野有哉
Feigin-Frenkel, Adamovic-Milas, and Frenkel-Kac-Wakimoto
Feigin-Frenkel、Adamovic-Milas 和 Frenkel-Kac-Wakimoto
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板場 綾子;金加喜;Tomoyuki Arakawa;伊山 修;荒川 知幸;浅芝 秀人;Tomoyuki Arakawa;伊山 修;Hiromichi Yamada;伊山 修;山内 博;板場 綾子;Tomoyuki Arakawa
  • 通讯作者:
    Tomoyuki Arakawa
Endo-trivial modules for finite gorups with dihedral Sylow 2-subgroups
具有二面 Sylow 2 子群的有限群的内琐碎模块
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板場 綾子;金加喜;Tomoyuki Arakawa;伊山 修;荒川 知幸;浅芝 秀人;Tomoyuki Arakawa;伊山 修;Hiromichi Yamada;伊山 修;山内 博;板場 綾子;Tomoyuki Arakawa;伊山 修;Tomoyuki Arakawa;越谷重夫
  • 通讯作者:
    越谷重夫
有界導来圏の基本事項
有界派生类别的基础知识
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;越谷重夫;Mayumi Kimura
  • 通讯作者:
    Mayumi Kimura

伊山 修的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('伊山 修', 18)}}的其他基金

整環の表現論の傾理論による深化
利用倾斜理论深化代数的表示理论
  • 批准号:
    23K22384
  • 财政年份:
    2024
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deepening representation theory of orders by tilting theory
利用倾斜理论深化阶次表示理论
  • 批准号:
    22H01113
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tilting complex and Perverse equivalence in Representation theory
表示论中的倾斜复数与反常等价
  • 批准号:
    17F17814
  • 财政年份:
    2017
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
曲面の組合せ論によるブラウアーグラフ代数の導来圏の研究
利用表面组合学研究布劳尔图代数的派生范畴
  • 批准号:
    17F17019
  • 财政年份:
    2017
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
整環の表現論と非可換代数幾何
积分环表示论与非交换代数几何
  • 批准号:
    12F02763
  • 财政年份:
    2012
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
準傾複体とBridgeland安定性条件による導来圏の研究
使用准倾斜复合体和布里奇兰稳定性条件研究派生类别
  • 批准号:
    12F02318
  • 财政年份:
    2012
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
クラスター代数の圏論化と歪対称化可能な場合への拡張
簇代数的范畴理论化和可斜对称情况的推广
  • 批准号:
    10F00723
  • 财政年份:
    2010
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数幾何学における非可換特異点解消
代数几何中的非交换奇点解析
  • 批准号:
    08F08781
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多元環の表現論。特にクイバー表現のテンサー積と導来圏
多维环的表示论。
  • 批准号:
    08F08787
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
整環の表現論
正则环的表示论
  • 批准号:
    15740022
  • 财政年份:
    2003
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了