非結合的な単純代数の構造論

非结合简单代数的结构理论

基本信息

  • 批准号:
    11F01753
  • 负责人:
  • 金额:
    $ 0.9万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

特別研究員は、昨年度に引き続き、受け入れ研究者と共同で自己入射多元環の高次元Auslander-Reiten理論を研究した。多元環の表現論では、有限表現型と呼ばれる、直既約加群を有限個しか持たないクラスが重要である。箙(クイバー)の道多元環(pathalgebra)に対しては、古典的なGabrie1の定理によって、有限表現型とはADE型のディンキン箙に他ならないことが知られている。一方、道多元環とは別の重要なクラスとして、有限群の群環や0次元の可換Gorenstein環をはじめとする自己入射多元環(selfinjective algebra, Frobenius algebra)がある。自己入射多元環に対しては、Riedtmannによって有限表現型の分類がなされており、それらはADE型ディンキン箙の傾多元環(tilted algebra)の、反復多元環(repetitive algebra)の自己同型による軌道圏であることが知られている。高次元Auslander-Reiten理論においては、有限表現型多元環の高次元化であるn有限表現型多元環が重要である。これはn団傾加群(n-cluster tilting module)と呼ばれる特別な加群を持っことによって定義されるクラスであり、通常の有限表現型とは1有限表現型に他ならない。大域次元がnであるn有限表現型多元環は、簸の道多元環の高次元化を与えるものであり、受け入れ研究者やHerschend, Oppermannによってポテンシャル付き箙や前射影多元環を用いて研究されている。特別研究員は受け入れ研究者と共同で、〃有限表現型であるような自己入射多元環の一般的な構成方法を発見した。具体的には「τ-n有限性」を満たす多元環の反復多元環の自己同型による軌道圏が、n有限表現型の自己入射多元環であることを証明した。n1の場合、τ_1有限性とは、ADE型ディンキン箙であることに他ならないため、我々の構成は、上で述べたRiedtmamの構成の一般化とみなされる。現時点で知られているn有限表現型の自己入射多元環はすべて、この方法により再構成することが可能であり、さらに数多くの新しい例を得ることができる。現在、これらの研究成果をまとめた論文を準備中である。
从去年开始,特别研究人员研究了与主持人研究人员合作的自我构度多回路的较高维度。在多圆形表达理论中,一个称为有限表型的类,该类别只有有限数量的直接添加组很重要。对于箭袋的病理,众所周知,经典的Gabrie1定理意味着有限的表型无非是ADE类型的Dinkin炉子。另一方面,路径多圆环的另一个重要类是自注射的代数(Frobenius代数),包括有限的组环和0位维度的交换性Gorenstein环。 Riedtmann已将自我含量多环体分类为有限表型,并且已知它们是Ade-type Dinkin洞穴的倾斜代数的汽车轨道球。在高维的Auslander-Reiten理论中,N-Finite表型复数环是有限表型复数环的较高维度化。这是通过拥有一个称为N群集倾斜模块的特殊组来定义的类,通常的有限表型不过是有限表型。 N具有N全局尺寸的N有限表型多环形环给出了积累的路径多环形环的维度,并已使用潜在的SIN和PEFPROCTION MULTICECHLIC环对宿主研究人员和Herschend和Oppermann进行了研究。这位特别研究人员与主持人研究人员合作,发现了一种构建有限表型的自我构成多圈的一般方法。具体而言,已经证明,由于满足“τ-n有限性”的多个环的重复多环形环的自动形态,轨道球是带有N-纤维表型的自我含量的多环形。在N1的情况下,τ_1有限性不过是ADE型Dinkin的罪过,因此我们的配置被认为是上述RIEDTMAM配置的概括。 N-Finite表型的所有当前已知的自我多环节都可以通过此方法重建,并且可以获得更多的新示例。目前,正在准备总结这些研究结果的论文。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Classification of the four-dimensional power-commutative real division algebras
四维幂交换实除代数的分类
Decomposing tensor products for cyclic and dihedral groups
循环群和二面体群的张量积分解
Loewy lengths of tensor products of kD_21-modules
kD_21-模张量积的 Loewy 长度
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Darpoe;Abdellatif Rochdi;Erik Darpoe;Erik Darpoe;Erik Darpoe;Erik Darpoe
  • 通讯作者:
    Erik Darpoe
Space-time codes and division algebras
时空码和除法代数
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Darpoe;Abdellatif Rochdi;Erik Darpoe
  • 通讯作者:
    Erik Darpoe
On the representation rings of the dihedral 2-groups
关于二面体2-群的表示环
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Erik Darpoe;Abdellatif Rochdi;Erik Darpoe;Erik Darpoe;Erik Darpoe
  • 通讯作者:
    Erik Darpoe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

伊山 修其他文献

Generalized complex structures on 4-manifolds and generalized hyperkaehler structures
4 流形上的广义复结构和广义超凯勒结构
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Hoshino;N. Kameyama and H. Koga;Ryushi Goto;森重文;足立 崇英;R. Goto;森重文;毛利 出;伊山 修;R. Goto;森重文;越谷重夫;後藤竜司;森重文;伊山 修;後藤竜司;Shigefumi Mori;毛利 出;R. Goto;伊山 修;R. Goto;Shigefumi Mori;佐藤眞久;Shigefumi Mori;R. Goto;浅芝 秀人;Shigefumi Mori;伊山 修;R. Goto
  • 通讯作者:
    R. Goto
Preprojective algebras and τ-tilting theory
原投影代数和 τ-倾斜理论
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;越谷重夫;Mayumi Kimura;Osamu Iyama;水野有哉;Osamu Iyama;浅芝 秀人;Osamu Iyama;浅芝 秀人;浅芝 秀人;Osamu Iyama;浅芝 秀人;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;Shigeo Koshitani;Osamu Iyama;浅芝 秀人;Shigeo Koshitani;Osamu Iyama;Osamu Iyama;Osamu Iyama;Osamu Iyama;Shigeo Koshitani;Shigeo Koshitani;浅芝 秀人;Mayumi Kimura;Izuru Mori;水野有哉;中島健,浅芝秀人;Osamu Iyama;相原琢磨;浅芝 秀人;Osamu Iyama;Izuru Mori;水野有哉
  • 通讯作者:
    水野有哉
Endo-trivial modules for finite gorups with dihedral Sylow 2-subgroups
具有二面 Sylow 2 子群的有限群的内琐碎模块
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板場 綾子;金加喜;Tomoyuki Arakawa;伊山 修;荒川 知幸;浅芝 秀人;Tomoyuki Arakawa;伊山 修;Hiromichi Yamada;伊山 修;山内 博;板場 綾子;Tomoyuki Arakawa;伊山 修;Tomoyuki Arakawa;越谷重夫
  • 通讯作者:
    越谷重夫
Feigin-Frenkel, Adamovic-Milas, and Frenkel-Kac-Wakimoto
Feigin-Frenkel、Adamovic-Milas 和 Frenkel-Kac-Wakimoto
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    板場 綾子;金加喜;Tomoyuki Arakawa;伊山 修;荒川 知幸;浅芝 秀人;Tomoyuki Arakawa;伊山 修;Hiromichi Yamada;伊山 修;山内 博;板場 綾子;Tomoyuki Arakawa
  • 通讯作者:
    Tomoyuki Arakawa
有界導来圏の基本事項
有界派生类别的基础知识
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    伊山 修;越谷重夫;Mayumi Kimura
  • 通讯作者:
    Mayumi Kimura

伊山 修的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('伊山 修', 18)}}的其他基金

整環の表現論の傾理論による深化
利用倾斜理论深化代数的表示理论
  • 批准号:
    23K22384
  • 财政年份:
    2024
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Deepening representation theory of orders by tilting theory
利用倾斜理论深化阶次表示理论
  • 批准号:
    22H01113
  • 财政年份:
    2022
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Tilting complex and Perverse equivalence in Representation theory
表示论中的倾斜复数与反常等价
  • 批准号:
    17F17814
  • 财政年份:
    2017
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
曲面の組合せ論によるブラウアーグラフ代数の導来圏の研究
利用表面组合学研究布劳尔图代数的派生范畴
  • 批准号:
    17F17019
  • 财政年份:
    2017
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
整環の表現論と非可換代数幾何
积分环表示论与非交换代数几何
  • 批准号:
    12F02763
  • 财政年份:
    2012
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
準傾複体とBridgeland安定性条件による導来圏の研究
使用准倾斜复合体和布里奇兰稳定性条件研究派生类别
  • 批准号:
    12F02318
  • 财政年份:
    2012
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
クラスター代数の圏論化と歪対称化可能な場合への拡張
簇代数的范畴理论化和可斜对称情况的推广
  • 批准号:
    10F00723
  • 财政年份:
    2010
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数幾何学における非可換特異点解消
代数几何中的非交换奇点解析
  • 批准号:
    08F08781
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多元環の表現論。特にクイバー表現のテンサー積と導来圏
多维环的表示论。
  • 批准号:
    08F08787
  • 财政年份:
    2008
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
整環の表現論
正则环的表示论
  • 批准号:
    15740022
  • 财政年份:
    2003
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)

相似海外基金

Study on representations of Morita algebras and homological dimensions
森田代数的表示和同调维数的研究
  • 批准号:
    16K05091
  • 财政年份:
    2016
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Diversified research of ring theory and representation theory with derived categories as its center
以派生范畴为中心的环理论和表示论的多元化研究
  • 批准号:
    25287001
  • 财政年份:
    2013
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
多元環の表現と団傾部分圏の研究
多维环的表示和群体倾向子类的研究
  • 批准号:
    11J05593
  • 财政年份:
    2011
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
傾変異による三角圏の構造解析
使用倾斜变化进行三角形类别的结构分析
  • 批准号:
    10J05801
  • 财政年份:
    2010
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Representation theoretical research on algebraic structures of rings and module categories
环与模范畴的代数结构表示理论研究
  • 批准号:
    21340003
  • 财政年份:
    2009
  • 资助金额:
    $ 0.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了