Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
基本信息
- 批准号:10460329
- 负责人:
- 金额:$ 8.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2023-01-13
- 项目状态:已结题
- 来源:
- 关键词:AddressAir PollutionAncillary StudyAreaBioinformaticsBiological MarkersBiometryClinicalClinical DataClinical ResearchClinical Trials DesignCodeCollaborationsComputer softwareCustomDataData AnalysesData AnalyticsData CollectionData ElementData ScienceData SetDatabasesEnsureGoalsHealthHealth Insurance Portability and Accountability ActHeartHousingHumanHuman ResourcesInflammasomeInterdisciplinary StudyInternetJointsKnowledgeLeadLongitudinal StudiesLungManuscriptsMetadataMethodologyModelingModernizationMonitorParticipantPathologyPatientsPreparationProductionProgram Research Project GrantsPublicationsQuality ControlRegulationReproducibilityReproducibility of ResultsResearchResearch DesignResearch PersonnelResearch Project GrantsResearch SubjectsResourcesSamplingScienceSecureServicesSiteSpecific qualifier valueStatistical Data InterpretationStatistical MethodsSystemTestingTimeTimeLineWorkbasebioinformatics toolclinical phenotypedata de-identificationdata integritydata managementdesignelectronic datahuman tissueinnovationlarge datasetslongitudinal analysismemberprogramsquality assurancesoundtool
项目摘要
ABSTRACT: DATA MANAGEMENT AND ANALYTICS CORE (DMAC)
Data Management and Analytics Core (DMAC) and the overall goals that provide support to the Scientific
Human Biomarker Exposure Monitoring Core (HEMC) and Projects 1-3 by establishing and maintaining a
secure centralized system to house, share, and manage data; designing robust studies; and analyzing clinical,
mechanistic, and high-throughput data for the three PPG projects. DMAC will work with the cores and projects
to ensure that analyses resulting from clinical and mechanistic study data are performed with integrity and rigor,
using compatible definitions and metrics for smooth integration to provide interpretable findings and advance
clinical and mechanistic research for the program. Our aims are as follows. Aim 1. Provide a state-of-the-art
secure, integrated and interactive database of high-quality data generated by projects in the program that
enables wide access to study investigators. The DMAC will build a system in Research Electronic Data Capture
(REDCap) to house study data that extends the Parker Center's state-of-the-art biospecimen management
software platform to provide a PPG platform that integrates data from Projects 1-3 and the HEMC. REDCap will
integrate data from biospecimens collected for this program project with secured, associated patient metadata
for research on human tissues. DMAC will conduct quality control for all PPG data and analyses to ensure data
elements are clean. Aim 2. Design scientifically sound and robust studies across projects in the program. The
DMAC consists of personnel with expertise in designing clinical trials, longitudinal studies, and studies that
include mechanistic endpoints. The core will leverage such expertise using a team science-based approach and
refining questions and hypotheses that are feasible to develop scientifically sound analysis plans using the most
modern statistical tools that lend themselves to interpretable and meaningful findings, and to justify the number
of samples and participants necessary to address scientific questions by considering resources available during
the specified study timeline. Aim 3. Conduct analyses of clinical, mechanistic, and high throughput data. The
DMAC will develop long-term collaborative relationships with PPG investigators by embedding core members
into investigators' research teams to lead the data science component of studies. Using a well-established team
science-based approach, core members will develop and implement statistical analysis plans to address project
aims to assure findings are reproducible. The DMAC will educate PPG investigators in biostatistics and
bioinformatics most pertinent to their research to promote effective collaboration in the production of
interdisciplinary research publications. Together with the HEMC, the DMAC offers some of the most innovative
tools for bioinformatic and statistical analysis of large data sets to make the broadest and most transformative
impact in understanding clinical phenotype associations with mechanistic studies in air-pollution-associated
pathology.
摘要:数据管理和分析核心(DMAC)
数据管理和分析核心(DMAC)和为科学研究提供支持的总体目标
人类生物标记物暴露监测核心(HEMC)和项目1-3,通过建立和维护
保护集中式系统,以存储、共享和管理数据;设计可靠的研究;以及分析临床、
三个PPG项目的机械性和高通量数据。DMAC将与核心和项目合作
为了确保从临床和机械研究数据产生的分析以完整和严谨的方式执行,
使用兼容的定义和指标实现平稳集成,以提供可解释的结果和进展
该计划的临床和机制研究。我们的目标如下。目标1.提供最先进的
由计划中的项目生成的高质量数据的安全、集成和交互数据库
使研究人员能够广泛接触。DMAC将在研究电子数据捕获中建立一个系统
(RedCap)存储研究数据,这些数据扩展了帕克中心最先进的生物样本管理
软件平台,提供PPG平台,集成项目1-3和HEMC的数据。红帽将会
将为该计划项目收集的生物样品数据与受保护的关联患者元数据集成在一起
用于人体组织的研究。DMAC将对所有PPG数据和分析进行质量控制,以确保数据
元素是干净的。目标2.在项目中的各个项目中设计科学合理和可靠的研究。这个
DMAC由在设计临床试验、纵向研究和研究方面具有专业知识的人员组成
包括机械式终端。核心将使用基于团队科学的方法来利用这些专业知识,并
提炼问题和假设是可行的,以制定科学合理的分析计划使用最
现代统计工具,有助于解释和有意义的发现,并证明数字
通过考虑期间可用的资源,提供解决科学问题所需的样本和参与者
指定的研究时间表。目的3.对临床、机械和高通量数据进行分析。这个
DMAC将通过嵌入核心成员与PPG调查人员发展长期合作关系
进入调查人员的研究团队,领导研究的数据科学部分。使用一支成熟的团队
以科学为基础的方法,核心成员将制定和实施统计分析计划,以解决项目
旨在确保调查结果是可重现的。DMAC将对PPG调查人员进行生物统计学和
与他们的研究最相关的生物信息学,以促进在生产
跨学科研究出版物。与HEMC一起,DMAC提供了一些最具创新性的
用于对大数据集进行生物信息学和统计分析的工具,以做出最广泛和最具变革性的
空气污染相关机制研究对理解临床表型相关性的影响
病理学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANISHA DESAI其他文献
MANISHA DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANISHA DESAI', 18)}}的其他基金
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
- 批准号:
10684163 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
- 批准号:
10400835 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
- 批准号:
10548871 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
- 批准号:
10269333 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
- 批准号:
10701727 - 财政年份:2019
- 资助金额:
$ 8.37万 - 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
- 批准号:
10249960 - 财政年份:2019
- 资助金额:
$ 8.37万 - 项目类别:
相似海外基金
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
- 批准号:
MR/Y020014/1 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Fellowship
Suppression of air pollution via aerosol mediated removal of peroxy radicals
通过气溶胶介导去除过氧自由基抑制空气污染
- 批准号:
NE/Y000226/1 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Research Grant
Geographic and Sociodemographic Variability in Air Pollution Exposure
空气污染暴露的地理和社会人口变化
- 批准号:
2342266 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant
Air-pollution Innovation in Regional-forecasts utilising operational Satellite Applications and Technologies (AIRSAT)
利用卫星应用和技术(AIRSAT)进行区域预测的空气污染创新
- 批准号:
NE/Y005147/1 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Research Grant
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
- 批准号:
485322 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Operating Grants
Health effects of low-concentration, non-urban air pollution: health impacts of ship emission controls
低浓度非城市空气污染对健康的影响:船舶排放控制对健康的影响
- 批准号:
23H03158 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Political Economy of Vulnerability to Air Pollution in Kathmandu Valley, Nepal
尼泊尔加德满都谷地空气污染脆弱性的政治经济学
- 批准号:
2884672 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Studentship
Improving our understanding of the atmospheric sulfur cycle and its impact on air pollution and climate
提高我们对大气硫循环及其对空气污染和气候影响的了解
- 批准号:
2885122 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Studentship
Impacts of Air Pollution from Ultrafine Tire-Wear Particles on Cardiorespiratory Health
超细轮胎磨损颗粒造成的空气污染对心肺健康的影响
- 批准号:
2899750 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Studentship
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:














{{item.name}}会员




