Diabetes Clinical and Translational Core

糖尿病临床和转化核心

基本信息

  • 批准号:
    10407866
  • 负责人:
  • 金额:
    $ 17.87万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2017
  • 资助国家:
    美国
  • 起止时间:
    2017-09-15 至 2027-06-30
  • 项目状态:
    未结题

项目摘要

DIABETES CLINICAL AND TRANSLATIONAL CORE (DCTC): PROJECT SUMMARY/ABSTRACT The goal of the Stanford Clinical & Translational Core (CTC) is to facilitate high-impact diabetes research by SDRC members. At Stanford, pioneers in cutting-edge technologies of diverse science fields are often in search of clinical collaborators with human subjects to ‘translate’ their findings to the clinic. Similarly, clinical investigators often fail to innovate based on a lack of awareness or accessibility to improved or novel methodologies. In addition, teams of scientists and clinicians attempting to translate their work often encounter hurdles with regulatory processes, sample management, and thoughtful data collection, or analysis empowered by modern analysis, leading to inefficient use of time, sample loss, failure to complete studies, and disincentive to provide banked samples for collaborators. The CTC addresses these specific needs by leveraging existing Stanford resources to focus on diabetes-specific research, thus enhancing our institution’s ability to perform innovative high-impact interdisciplinary studies that surpass the capabilities of a single investigator/laboratory. The CTC team is led by directors that are national leaders in their fields of diabetes- related research, and provides three core services: 1) Advanced support in analytics including study design, database design with setup of data capture, and linkage to the electronic medical record and biorepository, data management, and data analysis, and 2) A Bio-repository - unique at Stanford - of prospectively collected human tissue samples with standardization of collection and sample tracking, and links to clinical data, all accessible via a centralized hub. 3) The CTC will orient SDRC investigators and their teams and train them to use each of these core services effectively. In addition, the CTC is well-integrated with the Clinical Trials Research Unit (CTRU) of the Stanford CTSA-supported “SPECTRUM” programs for clinical and translational research. This integration improves efficient clinical sample collection and clinical assays for designing studies, recording data, logging samples, and linking sample results to phenotypic and metabolic data. Thus, institution- wide support exists for collaborative and “team” science, for modernizing data collection methods, and for resource sharing. The CTC will continue to leverage expertise in scientific methods and research-support systems developed on campus but that are underused or not yet tailored to diabetes research. Use of the CTC by SDRC members will advance the planning, execution and communication of coordinated, collaborative, and transformative clinical and translational research. The CTC will also serve new SDRC members at the Universities of California at Berkeley or at Davis, including those supported through the proposed Regional Pilot & Feasibility Award expansion. Based on growth of the SDRC membership, evolution of exciting new services like the CTC Bio-repository and increasing membership demand for human tissue and cell studies, we anticipate growth in use of the specialized and unique CTC services in the coming years.
糖尿病临床和翻译核心(DCTC):项目总结/摘要 斯坦福大学临床与转化核心(CTC)的目标是通过以下方式促进高影响力的糖尿病研究: SDRC成员。在斯坦福大学,不同科学领域尖端技术的先驱们经常在 搜索与人类受试者的临床合作者,以将他们的发现“翻译”到临床。同样,临床 调查人员往往未能创新的基础上缺乏认识或可访问性,以改善或新颖的 方法论。此外,科学家和临床医生团队试图翻译他们的工作经常遇到 监管流程、样本管理和周到的数据收集或分析方面的障碍 现代分析的力量,导致时间利用效率低下,样本丢失,无法完成研究, 抑制向合作者提供库存样本。反恐委员会通过以下方式满足这些具体需要: 利用现有的斯坦福大学资源,专注于糖尿病的具体研究,从而提高我们机构的 能够进行创新的高影响力的跨学科研究,超越了单一的能力 调查员/实验室。CTC团队由糖尿病领域的国家领导人领导- 相关研究,并提供三个核心服务:1)先进的分析支持,包括研究设计, 数据库设计,包括数据采集设置,以及与电子病历和生物储存库的链接, 数据管理和数据分析,以及2)生物储存库-斯坦福大学独有-前瞻性收集 人体组织样本的标准化收集和样本跟踪,并链接到临床数据,所有 可通过集中式集线器访问。3)反恐委员会将指导国家发展和改革委员会的调查人员及其小组,并对他们进行培训, 有效地使用这些核心服务。此外,CTC与临床试验充分整合 斯坦福大学CTSA支持的“SPECTRUM”临床和转化项目的研究单位(CTRU) research.这种整合提高了有效的临床样品收集和临床测定, 记录数据、记录样品并将样品结果与表型和代谢数据相关联。因此,机构- 广泛支持协作和“团队”科学,现代化的数据收集方法, 资源共享反恐委员会将继续利用科学方法和研究支助方面的专门知识 在校园内开发的系统,但未得到充分利用或尚未针对糖尿病研究。使用 SDRC成员的CTC将推进协调的, 协作和变革性的临床和转化研究。CTC还将为新的SDRC提供服务 成员在加州大学伯克利分校或戴维斯,包括那些通过支持 建议扩大区域试点和可行性奖。根据SDRC成员的增长, 令人兴奋的新服务,如CTC生物库和不断增加的会员需求, 在细胞研究方面,我们预计在未来几年内,专门和独特的CTC服务的使用将有所增长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MANISHA DESAI其他文献

MANISHA DESAI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MANISHA DESAI', 18)}}的其他基金

Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
  • 批准号:
    10684163
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
  • 批准号:
    10400835
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
  • 批准号:
    10460329
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
  • 批准号:
    10548871
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
  • 批准号:
    10269333
  • 财政年份:
    2021
  • 资助金额:
    $ 17.87万
  • 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
  • 批准号:
    10701727
  • 财政年份:
    2019
  • 资助金额:
    $ 17.87万
  • 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
  • 批准号:
    10249960
  • 财政年份:
    2019
  • 资助金额:
    $ 17.87万
  • 项目类别:
Diabetes Clinical and Translational Core
糖尿病临床和转化核心
  • 批准号:
    10669023
  • 财政年份:
    2017
  • 资助金额:
    $ 17.87万
  • 项目类别:
Biostatistics
生物统计学
  • 批准号:
    10411091
  • 财政年份:
    2007
  • 资助金额:
    $ 17.87万
  • 项目类别:
Biostatistics
生物统计学
  • 批准号:
    10626974
  • 财政年份:
    2007
  • 资助金额:
    $ 17.87万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.87万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了