Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
基本信息
- 批准号:10269333
- 负责人:
- 金额:$ 8.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-01 至 2026-07-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAir PollutionAncillary StudyAreaBioinformaticsBiological MarkersBiometryClinicalClinical DataClinical ResearchClinical Trials DesignCodeCollaborationsComputer softwareCustomDataData AnalysesData AnalyticsData CollectionData ElementData ScienceData SetDatabasesEnsureGoalsHealthHealth Insurance Portability and Accountability ActHeartHousingHumanHuman ResourcesInflammasomeInterdisciplinary StudyInternetJointsKnowledgeLeadLongitudinal StudiesLungManuscriptsMetadataMethodologyModelingModernizationMonitorParticipantPathologyPatientsPreparationProductionProgram Research Project GrantsPublicationsQuality ControlRegulationReproducibilityReproducibility of ResultsResearchResearch DesignResearch PersonnelResearch Project GrantsResearch SubjectsResourcesSamplingScienceSecureServicesSiteSpecific qualifier valueStatistical Data InterpretationStatistical MethodsSystemTestingTimeTimeLineWorkbasebioinformatics toolclinical phenotypedata de-identificationdata integritydata managementdesignelectronic datahuman tissueinnovationlarge datasetslongitudinal analysismemberprogramsquality assurancesoundtool
项目摘要
ABSTRACT: DATA MANAGEMENT AND ANALYTICS CORE (DMAC)
Data Management and Analytics Core (DMAC) and the overall goals that provide support to the Scientific
Human Biomarker Exposure Monitoring Core (HEMC) and Projects 1-3 by establishing and maintaining a
secure centralized system to house, share, and manage data; designing robust studies; and analyzing clinical,
mechanistic, and high-throughput data for the three PPG projects. DMAC will work with the cores and projects
to ensure that analyses resulting from clinical and mechanistic study data are performed with integrity and rigor,
using compatible definitions and metrics for smooth integration to provide interpretable findings and advance
clinical and mechanistic research for the program. Our aims are as follows. Aim 1. Provide a state-of-the-art
secure, integrated and interactive database of high-quality data generated by projects in the program that
enables wide access to study investigators. The DMAC will build a system in Research Electronic Data Capture
(REDCap) to house study data that extends the Parker Center's state-of-the-art biospecimen management
software platform to provide a PPG platform that integrates data from Projects 1-3 and the HEMC. REDCap will
integrate data from biospecimens collected for this program project with secured, associated patient metadata
for research on human tissues. DMAC will conduct quality control for all PPG data and analyses to ensure data
elements are clean. Aim 2. Design scientifically sound and robust studies across projects in the program. The
DMAC consists of personnel with expertise in designing clinical trials, longitudinal studies, and studies that
include mechanistic endpoints. The core will leverage such expertise using a team science-based approach and
refining questions and hypotheses that are feasible to develop scientifically sound analysis plans using the most
modern statistical tools that lend themselves to interpretable and meaningful findings, and to justify the number
of samples and participants necessary to address scientific questions by considering resources available during
the specified study timeline. Aim 3. Conduct analyses of clinical, mechanistic, and high throughput data. The
DMAC will develop long-term collaborative relationships with PPG investigators by embedding core members
into investigators' research teams to lead the data science component of studies. Using a well-established team
science-based approach, core members will develop and implement statistical analysis plans to address project
aims to assure findings are reproducible. The DMAC will educate PPG investigators in biostatistics and
bioinformatics most pertinent to their research to promote effective collaboration in the production of
interdisciplinary research publications. Together with the HEMC, the DMAC offers some of the most innovative
tools for bioinformatic and statistical analysis of large data sets to make the broadest and most transformative
impact in understanding clinical phenotype associations with mechanistic studies in air-pollution-associated
pathology.
摘要:数据管理和分析核心(DMAC)
数据管理和分析核心(DMAC)以及为科学研究提供支持的总体目标
人类生物标志物暴露监测核心(HEMC)和项目1-3,建立和维护一个
安全的集中式系统来存放、共享和管理数据;设计稳健的研究;分析临床,
三个PPG项目的机械和高通量数据。DMAC将与核心和项目
为了确保完整和严格地进行临床和机理研究数据的分析,
使用兼容的定义和指标进行平滑整合,以提供可解释的结果,
临床和机制研究。我们的目标如下。目标1.提供最先进的
安全,集成和交互式的高质量数据库,由项目中的项目生成,
能够广泛接触研究者。DMAC将建立一个研究电子数据采集系统
(REDCap)存储研究数据,扩展了帕克中心最先进的生物标本管理
软件平台,以提供集成项目1-3和HEMC数据的PPG平台。REDCap将
将为该计划项目收集的生物标本数据与安全的相关患者元数据相结合
用于人体组织的研究DMAC将对所有PPG数据和分析进行质量控制,以确保
元素是干净的。目标2.在项目中设计科学合理和稳健的研究。的
DMAC由在设计临床试验、纵向研究和研究方面具有专业知识的人员组成,
包括机械终点。核心小组将采用以科学为基础的方法,利用这些专门知识,
完善问题和假设,以制定科学合理的分析计划,
现代统计工具,使自己的解释和有意义的结果,并证明数字
通过考虑到可利用的资源,
指定的研究时间轴。目标3.对临床、机制和高通量数据进行分析。的
DMAC将通过嵌入核心成员与PPG研究者建立长期合作关系
进入研究人员的研究团队,领导研究的数据科学部分。使用一个完善的团队
核心成员将制定和实施统计分析计划,以解决项目
目的是确保结果是可重复的。DMAC将对PPG研究者进行生物统计学教育,
生物信息学最相关的研究,以促进有效的合作,在生产
跨学科研究出版物。与HEMC一起,DMAC提供了一些最具创新性的
大型数据集的生物信息学和统计分析工具,
对理解空气污染相关的临床表型与机制研究的影响
病理
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MANISHA DESAI其他文献
MANISHA DESAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MANISHA DESAI', 18)}}的其他基金
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
- 批准号:
10684163 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
Data Management and Analysis Core (DMAC) for the Air pollution disrupts Inflammasome Regulation in HEart And Lung Total Health (AIRHEALTH) Study
空气污染扰乱心肺总体健康 (AIRHEALTH) 研究中炎症小体调节的数据管理和分析核心 (DMAC)
- 批准号:
10460329 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
- 批准号:
10400835 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
Novel machine learning and missing data methods for improving estimates of physical activity, sedentary behavior and sleep using accelerometer data
新颖的机器学习和缺失数据方法,可使用加速度计数据改进对身体活动、久坐行为和睡眠的估计
- 批准号:
10548871 - 财政年份:2021
- 资助金额:
$ 8.37万 - 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
- 批准号:
10701727 - 财政年份:2019
- 资助金额:
$ 8.37万 - 项目类别:
2/1 Arrest Respiratory Failure due to Pneumonia (ARREST PNEUMONIA)
2/1 因肺炎导致呼吸衰竭(ARREST PNEUMONIA)
- 批准号:
10249960 - 财政年份:2019
- 资助金额:
$ 8.37万 - 项目类别:
相似海外基金
Simulating Urban Air Pollution In The Lab
在实验室模拟城市空气污染
- 批准号:
MR/Y020014/1 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Fellowship
Suppression of air pollution via aerosol mediated removal of peroxy radicals
通过气溶胶介导去除过氧自由基抑制空气污染
- 批准号:
NE/Y000226/1 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Research Grant
Geographic and Sociodemographic Variability in Air Pollution Exposure
空气污染暴露的地理和社会人口变化
- 批准号:
2342266 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Standard Grant
Air-pollution Innovation in Regional-forecasts utilising operational Satellite Applications and Technologies (AIRSAT)
利用卫星应用和技术(AIRSAT)进行区域预测的空气污染创新
- 批准号:
NE/Y005147/1 - 财政年份:2024
- 资助金额:
$ 8.37万 - 项目类别:
Research Grant
Air pollution and Asthma in Canada: Projections of burden and the value of climate adaptation strategies
加拿大的空气污染和哮喘:负担预测和气候适应战略的价值
- 批准号:
485322 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Operating Grants
Health effects of low-concentration, non-urban air pollution: health impacts of ship emission controls
低浓度非城市空气污染对健康的影响:船舶排放控制对健康的影响
- 批准号:
23H03158 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
The Political Economy of Vulnerability to Air Pollution in Kathmandu Valley, Nepal
尼泊尔加德满都谷地空气污染脆弱性的政治经济学
- 批准号:
2884672 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Studentship
Improving our understanding of the atmospheric sulfur cycle and its impact on air pollution and climate
提高我们对大气硫循环及其对空气污染和气候影响的了解
- 批准号:
2885122 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Studentship
Impacts of Air Pollution from Ultrafine Tire-Wear Particles on Cardiorespiratory Health
超细轮胎磨损颗粒造成的空气污染对心肺健康的影响
- 批准号:
2899750 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别:
Studentship
The contribution of air pollution to racial and ethnic disparities in Alzheimer’s disease and related dementias: An application of causal inference methods
空气污染对阿尔茨海默病和相关痴呆症的种族和民族差异的影响:因果推理方法的应用
- 批准号:
10642607 - 财政年份:2023
- 资助金额:
$ 8.37万 - 项目类别: