Novel Perceptual and Oculomotor Heuristics for Enhancing Radiologic Performance

用于增强放射学性能的新颖感知和动眼神经启发法

基本信息

  • 批准号:
    10412086
  • 负责人:
  • 金额:
    $ 58.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROGRAM SUMMARY Radiological imaging is often the first step of the diagnostic pathway for many devastating diseases; thus, an erroneous assessment of “normal” can lead to death. Whereas a grayscale object in an image can be described by its first-order image statistics—such as contrast, spatial frequency, position, entropy, and orientation—none of these dimensions, by itself, indicates abnormal vs normal radiological findings. We are a highly diverse team proposing an empirical approach to determine the mixtures of the first-order statistics—the “visual textures”— that radiology experts explicitly and implicitly use to identify the locations of potential abnormalities in medical images. Our innovative approach does not rely on assumptions about which textures may or may not be im-portant to abnormality detection. Instead, we will track the oculomotor behavior of expert radiologists to deter-mine their conscious and unconscious targeting choices, and thus ascertain which textures are empirically in-formative. The ability of expert radiologists to rapidly find abnormalities suggests that they may be able to first identify them in their retinal periphery. Peripheral visual analysis skills are therefore potentially critical to radio-logic performance, despite being understudied. We will measure these skills and leverage the results to develop perceptual learning heuristics to improve peripheral abnormality texture detection. By comparing novices to ex-perts we will determine whether the first are inexpert due to a lack of sensitivity to diagnostically relevant textures (texture informativeness), or to a lack of knowledge about which textures are abnormal, or to a combined lack of both sensitivity and knowledge. Radiology also requires the acquisition of oculomotor skills through practice and optimization. Radiologic expertise thus changes the oculomotor system in predictable and detectable ways, in much the same way that an athlete’s body and brain change as a function of expertise acquisition in their sport. We will therefore analyze both the consistency between experts’ fixation choices in medical images, and the eye movement performance characteristics of experts vs novice radiologists, to create an objective oculomotor bi-omarker of radiological expertise. The differences between novices and experts will train a deep learning (DL) system, which will have human visual and oculomotor performance characteristics. Training the DL with the abnormalities identified by a panel of expert radiologists will allow it to pinpoint the possible solutions in the manner of a simulated human radiologist performing at peak accuracy, precision, and speed. The resulting rank-ordered list of possible optimal and suboptimal image-reading strategies will serve as a benchmarking tool to quantify the performance of actual clinicians and residents who read the same images, rested vs fatigued. Meas-uring the effects of both training and fatigue on radiology expertise will be a major interdisciplinary cross-cutting advance in performance assessment. Our proposal to quantify fatigue in terms of erosion of expertise represents a transformational advance towards objective fitness-for-duty and expertise measures in medicine and beyond.
节目概要 放射成像通常是许多毁灭性疾病诊断途径的第一步;因此,对“正常”的错误评估可能导致死亡。虽然图像中的灰度对象可以通过其一阶图像统计数据(例如对比度、空间频率、位置、熵和方向)来描述,但这些维度本身都不能指示异常与正常的放射学发现。我们是一个高度多样化的团队,提出了一种经验方法来确定一阶磁共振的混合物-“视觉纹理”-放射学专家明确和隐含地用于识别医学图像中潜在异常的位置。我们的创新方法不依赖于假设哪些纹理可能或可能不重要的异常检测。相反,我们将跟踪专家放射科医生的眼科行为,以确定他们有意识和无意识的目标选择,从而确定哪些纹理是经验信息。放射科专家快速发现异常的能力表明,他们可能能够首先在视网膜周边识别异常。因此,周边视觉分析技能可能是至关重要的无线电逻辑性能,尽管被研究不足。我们将测量这些技能,并利用结果来开发感知学习算法,以提高外周异常纹理检测。通过比较新手和专家,我们将确定第一个是不专业的,因为缺乏敏感性的诊断相关的纹理(纹理信息),或缺乏知识,哪些纹理是异常的,或缺乏敏感性和知识。放射学还需要通过实践和优化获得眼科技能。因此,放射学专业知识以可预测和可检测的方式改变了眼神经系统,就像运动员的身体和大脑在运动中随着专业知识的获得而变化一样。因此,我们将分析专家在医学图像中的注视选择之间的一致性,以及专家与新手放射科医生的眼动性能特征,以创建一个客观的放射学专业知识的眼生物标志物。新手和专家之间的差异将训练一个深度学习(DL)系统,该系统将具有人类视觉和视觉性能特征。通过放射科专家小组识别的异常来训练DL,将使其能够以模拟人类放射科医生的方式精确定位可能的解决方案,以达到最高的准确度,精度和速度。由此产生的可能的最佳和次优图像读取策略的等级排序列表将作为基准工具,以量化实际临床医生和居民谁读相同的图像,休息与疲劳的性能。测量培训和疲劳对放射学专业知识的影响将是绩效评估的一个重要跨学科交叉进展。我们的建议,量化疲劳方面的侵蚀的专业知识代表了一个转型的进步,对客观的健身为职责和专业知识的措施,在医学和超越。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Louis Macknik其他文献

Stephen Louis Macknik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Louis Macknik', 18)}}的其他基金

Novel Perceptual and Oculomotor Heuristics for Enhancing Radiologic Performance
用于增强放射学性能的新颖感知和动眼神经启发法
  • 批准号:
    10220201
  • 财政年份:
    2021
  • 资助金额:
    $ 58.83万
  • 项目类别:
Novel Perceptual and Oculomotor Heuristics for Enhancing Radiologic Performance
用于增强放射学性能的新颖感知和动眼神经启发法
  • 批准号:
    10623186
  • 财政年份:
    2021
  • 资助金额:
    $ 58.83万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10475654
  • 财政年份:
    2020
  • 资助金额:
    $ 58.83万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10703373
  • 财政年份:
    2020
  • 资助金额:
    $ 58.83万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10238153
  • 财政年份:
    2020
  • 资助金额:
    $ 58.83万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10474924
  • 财政年份:
    2020
  • 资助金额:
    $ 58.83万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10289888
  • 财政年份:
    2020
  • 资助金额:
    $ 58.83万
  • 项目类别:
NEURAL SIGNALS AT THE SPATIOTEMPORAL EDGE
时空边缘的神经信号
  • 批准号:
    6164662
  • 财政年份:
    2000
  • 资助金额:
    $ 58.83万
  • 项目类别:
NEURAL SIGNALS AT THE SPATIOTEMPORAL EDGE
时空边缘的神经信号
  • 批准号:
    2878899
  • 财政年份:
    1999
  • 资助金额:
    $ 58.83万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Standard Grant
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Studentship
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.83万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了