Novel Perceptual and Oculomotor Heuristics for Enhancing Radiologic Performance

用于增强放射学性能的新颖感知和动眼神经启发法

基本信息

  • 批准号:
    10623186
  • 负责人:
  • 金额:
    $ 55.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-05-31
  • 项目状态:
    未结题

项目摘要

PROGRAM SUMMARY Radiological imaging is often the first step of the diagnostic pathway for many devastating diseases; thus, an erroneous assessment of “normal” can lead to death. Whereas a grayscale object in an image can be described by its first-order image statistics—such as contrast, spatial frequency, position, entropy, and orientation—none of these dimensions, by itself, indicates abnormal vs normal radiological findings. We are a highly diverse team proposing an empirical approach to determine the mixtures of the first-order statistics—the “visual textures”— that radiology experts explicitly and implicitly use to identify the locations of potential abnormalities in medical images. Our innovative approach does not rely on assumptions about which textures may or may not be im-portant to abnormality detection. Instead, we will track the oculomotor behavior of expert radiologists to deter-mine their conscious and unconscious targeting choices, and thus ascertain which textures are empirically in-formative. The ability of expert radiologists to rapidly find abnormalities suggests that they may be able to first identify them in their retinal periphery. Peripheral visual analysis skills are therefore potentially critical to radio-logic performance, despite being understudied. We will measure these skills and leverage the results to develop perceptual learning heuristics to improve peripheral abnormality texture detection. By comparing novices to ex-perts we will determine whether the first are inexpert due to a lack of sensitivity to diagnostically relevant textures (texture informativeness), or to a lack of knowledge about which textures are abnormal, or to a combined lack of both sensitivity and knowledge. Radiology also requires the acquisition of oculomotor skills through practice and optimization. Radiologic expertise thus changes the oculomotor system in predictable and detectable ways, in much the same way that an athlete’s body and brain change as a function of expertise acquisition in their sport. We will therefore analyze both the consistency between experts’ fixation choices in medical images, and the eye movement performance characteristics of experts vs novice radiologists, to create an objective oculomotor bi-omarker of radiological expertise. The differences between novices and experts will train a deep learning (DL) system, which will have human visual and oculomotor performance characteristics. Training the DL with the abnormalities identified by a panel of expert radiologists will allow it to pinpoint the possible solutions in the manner of a simulated human radiologist performing at peak accuracy, precision, and speed. The resulting rank-ordered list of possible optimal and suboptimal image-reading strategies will serve as a benchmarking tool to quantify the performance of actual clinicians and residents who read the same images, rested vs fatigued. Meas-uring the effects of both training and fatigue on radiology expertise will be a major interdisciplinary cross-cutting advance in performance assessment. Our proposal to quantify fatigue in terms of erosion of expertise represents a transformational advance towards objective fitness-for-duty and expertise measures in medicine and beyond.
项目总结

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephen Louis Macknik其他文献

Stephen Louis Macknik的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephen Louis Macknik', 18)}}的其他基金

Novel Perceptual and Oculomotor Heuristics for Enhancing Radiologic Performance
用于增强放射学性能的新颖感知和动眼神经启发法
  • 批准号:
    10220201
  • 财政年份:
    2021
  • 资助金额:
    $ 55.61万
  • 项目类别:
Novel Perceptual and Oculomotor Heuristics for Enhancing Radiologic Performance
用于增强放射学性能的新颖感知和动眼神经启发法
  • 批准号:
    10412086
  • 财政年份:
    2021
  • 资助金额:
    $ 55.61万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10475654
  • 财政年份:
    2020
  • 资助金额:
    $ 55.61万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10703373
  • 财政年份:
    2020
  • 资助金额:
    $ 55.61万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10238153
  • 财政年份:
    2020
  • 资助金额:
    $ 55.61万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10474924
  • 财政年份:
    2020
  • 资助金额:
    $ 55.61万
  • 项目类别:
Visual cortical mechanisms for the perception of self-generated vs. external motion
感知自生运动与外部运动的视觉皮层机制
  • 批准号:
    10289888
  • 财政年份:
    2020
  • 资助金额:
    $ 55.61万
  • 项目类别:
NEURAL SIGNALS AT THE SPATIOTEMPORAL EDGE
时空边缘的神经信号
  • 批准号:
    6164662
  • 财政年份:
    2000
  • 资助金额:
    $ 55.61万
  • 项目类别:
NEURAL SIGNALS AT THE SPATIOTEMPORAL EDGE
时空边缘的神经信号
  • 批准号:
    2878899
  • 财政年份:
    1999
  • 资助金额:
    $ 55.61万
  • 项目类别:

相似国自然基金

企业绩效评价的DEA-Benchmarking方法及动态博弈研究
  • 批准号:
    70571028
  • 批准年份:
    2005
  • 资助金额:
    16.5 万元
  • 项目类别:
    面上项目

相似海外基金

An innovative EDI data, insights & peer benchmarking platform enabling global business leaders to build data-led EDI strategies, plans and budgets.
创新的 EDI 数据、见解
  • 批准号:
    10100319
  • 财政年份:
    2024
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Collaborative R&D
BioSynth Trust: Developing understanding and confidence in flow cytometry benchmarking synthetic datasets to improve clinical and cell therapy diagnos
BioSynth Trust:发展对流式细胞仪基准合成数据集的理解和信心,以改善临床和细胞治疗诊断
  • 批准号:
    2796588
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Studentship
Elements: CausalBench: A Cyberinfrastructure for Causal-Learning Benchmarking for Efficacy, Reproducibility, and Scientific Collaboration
要素:CausalBench:用于因果学习基准测试的网络基础设施,以实现有效性、可重复性和科学协作
  • 批准号:
    2311716
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
Benchmarking collisional rates and hot electron transport in high-intensity laser-matter interaction
高强度激光-物质相互作用中碰撞率和热电子传输的基准测试
  • 批准号:
    2892813
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Studentship
Collaborative Research: SHF: Medium: A Comprehensive Modeling Framework for Cross-Layer Benchmarking of In-Memory Computing Fabrics: From Devices to Applications
协作研究:SHF:Medium:内存计算结构跨层基准测试的综合建模框架:从设备到应用程序
  • 批准号:
    2347024
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Standard Grant
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233969
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Continuing Grant
FET: Medium: Quantum Algorithms, Complexity, Testing and Benchmarking
FET:中:量子算法、复杂性、测试和基准测试
  • 批准号:
    2311733
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Continuing Grant
Establishing and benchmarking advanced methods to comprehensively characterize somatic genome variation in single human cells
建立先进方法并对其进行基准测试,以全面表征单个人类细胞的体细胞基因组变异
  • 批准号:
    10662975
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
Collaborative Research: BeeHive: A Cross-Problem Benchmarking Framework for Network Biology
合作研究:BeeHive:网络生物学的跨问题基准框架
  • 批准号:
    2233968
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Continuing Grant
Benchmarking Quantum Advantage
量子优势基准测试
  • 批准号:
    EP/Y004418/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55.61万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了