Gather-Level Parallelism
收集级并行性
基本信息
- 批准号:EP/W014629/1
- 负责人:
- 金额:$ 43.09万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern big-data workloads are currently run on processors that are ill suited to extracting high performance from them. These workloads request data from DRAM main memory in unpredictable patterns, and so existing hardware and software solutions are ineffective at anticipating the high-latency work that is necessary. Today's computer processors are constantly stalled waiting for data to return from memory, with low throughput and inefficient execution.The untapped potential is significant. Many big-data workloads show potential forms of memory-level parallelism, where complex sequences of operations can be reordered and overlapped to hide much of the latency, and thus achieve high throughput. While compute-bound workloads have been greatly aided by special vector instructions, which calculate many operations simultaneously, the same cannot yet be said for memory-bound big-data workloads. This project seeks to marry compute parallelism with memory parallelism. We will redesign memory access methods with vectorisation in mind. This will allow us to prefetch, or anticipate the demands of, many complex sequences of compute and memory access all at once. We believe it is possible to make high-performance, efficient software mechanisms for prefetching that are as performant as dedicated hardware. Our new mechanisms will exploit a new concept called gather-level parallelism, by utilising and redesigning vector methods to achieve extreme memory-level parallelism without breaking the bank on programmable compute. To succeed, we will require new changes throughout both the compiler and the underlying hardware architecture.Gather-level parallelism stands to bring about a paradigm shift in how memory is accessed in today's systems. This is particularly pressing in an era where big-data workloads are already inefficient, and threatened further by the security mitigations necessary to eliminate the recently discovered Spectre vulnerabilities in today's computer processors. These cause even greater challenges in memory latency due to the restrictions used to hide vulnerabilities, thus making high-performance memory techniques even more pressing. The status quo, a choice between performance and security, on big data that is often sensitive, cannot be allowed to continue.
现代大数据工作负载目前运行在不适合从中提取高性能的处理器上。这些工作负载以不可预测的模式从DRAM主存储器请求数据,因此现有的硬件和软件解决方案在预测所需的高延迟工作方面是无效的。今天的计算机处理器总是在等待数据从内存返回,吞吐量低,执行效率低。未开发的潜力是巨大的。许多大数据工作负载显示出内存级并行的潜在形式,其中复杂的操作序列可以重新排序和重叠,以隐藏大部分延迟,从而实现高吞吐量。虽然计算限制的工作负载得到了特殊向量指令的极大帮助,这些指令同时计算许多操作,但内存限制的大数据工作负载还不能这么说。这个项目试图将计算并行性与内存并行性结合起来。我们将重新设计内存访问方法,并考虑到矢量化。这将使我们能够同时预取或预测许多复杂的计算和内存访问序列的需求。我们相信,有可能使高性能,高效的软件预取机制,作为专用硬件的性能。我们的新机制将利用一个新的概念,称为并行级并行,通过利用和重新设计向量的方法来实现极端的内存级并行,而不会打破银行的可编程计算。为了取得成功,我们将需要在编译器和底层硬件架构中进行新的更改。聚集级并行性将为当今系统中访问内存的方式带来范式转变。在大数据工作负载已经效率低下的时代,这一点尤为紧迫,并且受到消除当今计算机处理器中最近发现的Spectre漏洞所需的安全缓解措施的进一步威胁。由于用于隐藏漏洞的限制,这些会导致内存延迟方面的更大挑战,从而使高性能内存技术变得更加紧迫。在性能和安全性之间做出选择的现状,在通常敏感的大数据上,不能允许继续下去。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sam Ainsworth其他文献
Sam Ainsworth的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
粒子level set方法的改进与空间自适应波浪模型并行化研究
- 批准号:52171245
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
基于Level Set方法的三维爆炸与冲击仿真软件开发及其应用
- 批准号:11502121
- 批准年份:2015
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
层级稀疏化的Mid-Level特征空间下高分辨率遥感影像检索方法研究
- 批准号:41401376
- 批准年份:2014
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
CPU/GPGPU紧耦合异构多核系统共享Last Level Cache优化研究
- 批准号:61379035
- 批准年份:2013
- 资助金额:75.0 万元
- 项目类别:面上项目
基于新LEVEL SET方法的双标量小火焰模型的研究
- 批准号:51306013
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
Level Set方法及其在爆炸与冲击问题数值模拟中的应用研究
- 批准号:10872085
- 批准年份:2008
- 资助金额:48.0 万元
- 项目类别:面上项目
几何造型中交互式Level Set方法研究
- 批准号:60373036
- 批准年份:2003
- 资助金额:23.0 万元
- 项目类别:面上项目
逆向工程中基于小波特征的曲面配准与Level-set建模方法研究
- 批准号:50305027
- 批准年份:2003
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
用Level Set方法研究气液两相流界面迁移的微观特性
- 批准号:50106011
- 批准年份:2001
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
ParaSol: Fine-Grained Thread-Level Parallelism for Single-Threaded Performance
ParaSol:细粒度线程级并行性以实现单线程性能
- 批准号:
EP/W00576X/1 - 财政年份:2022
- 资助金额:
$ 43.09万 - 项目类别:
Research Grant
CAREER: Systems and Architectural Support for Accelerator-Level Parallelism
职业:加速器级并行的系统和架构支持
- 批准号:
2044963 - 财政年份:2021
- 资助金额:
$ 43.09万 - 项目类别:
Continuing Grant
SHF: Small: Graph-X: Exploiting Hidden Parallelism of Irregular and Non-Stencil Computation in High-Level Synthesis
SHF:小:Graph-X:在高级综合中利用不规则和非模板计算的隐藏并行性
- 批准号:
1908177 - 财政年份:2019
- 资助金额:
$ 43.09万 - 项目类别:
Standard Grant
XPS: Full: FP: Collaborative Research: Sphinx: Combining Data and Instruction Level Parallelism through Demand Driven Execution of Imperative Programs
XPS:完整:FP:协作研究:Sphinx:通过命令式程序的需求驱动执行将数据和指令级并行性相结合
- 批准号:
1533828 - 财政年份:2015
- 资助金额:
$ 43.09万 - 项目类别:
Standard Grant
XPS: Full: FP: Collaborative Research: Sphinx: Combining Data and Instruction Level Parallelism through Demand Driven Execution of Imperative Programs
XPS:完整:FP:协作研究:Sphinx:通过命令式程序的需求驱动执行将数据和指令级并行性相结合
- 批准号:
1533846 - 财政年份:2015
- 资助金额:
$ 43.09万 - 项目类别:
Standard Grant
EAGER: Combining Data and Instruction Level Parallelism through Demand Driven Execution of Imperative Programs
EAGER:通过命令式程序的需求驱动执行将数据和指令级并行性相结合
- 批准号:
1450062 - 财政年份:2014
- 资助金额:
$ 43.09万 - 项目类别:
Standard Grant
Workshop on High-Level Programming Models for Parallelism
并行高级编程模型研讨会
- 批准号:
1339507 - 财政年份:2013
- 资助金额:
$ 43.09万 - 项目类别:
Standard Grant
CAREER: Explicit Loop Architectures for Efficiently Exploiting Instruction- and Data-Level Parallelism
职业:用于有效利用指令和数据级并行性的显式循环架构
- 批准号:
1149464 - 财政年份:2012
- 资助金额:
$ 43.09万 - 项目类别:
Continuing Grant
Achieving Petaflops Level Parallelism for Simulation-Based Engineering Problems in Fluid Dynamics
为流体动力学中基于仿真的工程问题实现千万亿次并行性
- 批准号:
0960490 - 财政年份:2009
- 资助金额:
$ 43.09万 - 项目类别:
Standard Grant
CAREER: Power-Performance Considerations of Thread-level Parallelism in On-chip Multicore Architectures
职业:片上多核架构中线程级并行的功耗性能考虑
- 批准号:
0545995 - 财政年份:2006
- 资助金额:
$ 43.09万 - 项目类别:
Continuing Grant