Aim/Project 1. Dose-response at single-cell and population levels
目标/项目 1. 单细胞和群体水平的剂量反应
基本信息
- 批准号:9065574
- 负责人:
- 金额:$ 36.51万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:Antibiotic ResistanceAntibioticsAntineoplastic AgentsApoptosisApoptoticAreaAutophagocytosisBiological AssayCancer cell lineCell Culture TechniquesCell CycleCell DeathCell LineCell divisionCellsCellular MorphologyCommunicable DiseasesComplexDNA DamageDataDoseDrug AddictionDrug SynergismDrug TargetingDrug resistanceDrug usageEnd Point AssayEpidermal Growth Factor Receptor Tyrosine Kinase InhibitorExhibitsFollow-Up StudiesGenotypeGoalsHeterogeneityHolidaysImmuneImmunofluorescence MicroscopyLaboratoriesMAP Kinase GeneMeasuresMethodsMicroscopyModelingMolecularMonitorMycobacterium tuberculosisNoisePatientsPharmaceutical PreparationsPharmacologyPharmacotherapyPhenotypePhysiologicalPlayPopulationPropertyProteinsRegulator GenesResearch PersonnelResistanceResourcesRoleSamplingShapesSignal TransductionSystemTestingTherapeuticTherapeutic EffectTimeTranslatingTranslationsTumor Stem CellsVariantbasecancer cellcancer stem cellcell fixingcell typecellular engineeringcombination cancer therapyfollow-upgenetic regulatory proteinhuman diseasekinase inhibitorlive cell imagingmolecular markerneglectnon-geneticresearch studyresponsesenescencetumor microenvironment
项目摘要
PROJECT SUMMARY
This aim focuses on determinants of dose-response at a single-cell level. We will test the hypothesis that
non-genetic cell-to-cell variability (arising from variation in the relative levels or activities of network
components) is critical in determining the shape of dose-response curves and the maximum therapeutic effect
that can be achieved at high drug concentrations. The impact of stochastic variation will be contrasted with that
of cell cycle state and of special lineages (e.g. tumor stem cells). Experiments in this Aim also examine the
importance of timing and order-of-exposure in combination cancer therapy. All but aim 1.4 will be performed
using panels of ~10-40 cancer cell lines grown in 2D culture supplemented by a smaller number of patient-
derived cultures obtained through the Translational Pharmacology Core (Aim 5). The influence of the tumor
microenvironment on dose-response will be examined based on progress with Aim 3.4. Studies in Aim 1 are
distinguished from those in Aim 2 by their focus on phenotypes as opposed to modeling intracellular signaling.
Aim 1.1 will focus on genetically diverse panels of cancer cell lines and their responses to anti-cancer
drugs, primarily investigational and approved kinase inhibitors. Aim 1.1.1 will use fixed cell microscopy to
discriminate among drug response phenotypes at a single-cell level using molecular markers of cell division,
induction of senescence and apoptosis (and other forms of cell death such as autophagy). Variation in response
with time after drug addition, physiological state and genotype will be studied across cell types and within
single cells in a genetically homogenous population. Aim 1.1.2. will wills use mutational information (MI) and
other methods to associate dose response parameters from Aims 1.1.1-1.1.2 with features of the drug, target of
cell type. Aim 1.1.3 will supplement fixed-cell analysis with live-cell imaging of selected drug-cell line
combinations to determine how response evolves over time and distinguish among phenotypes that appear
similar by endpoint assays. Aim 1.1.4 will extend these studies to patient-derived lines and cultures with the
goal of increasing the relevance of our findings to human disease.
Aim 1.2 will determine the role of cell-to-cell heterogeneity on fractional response and dose-response
curves that are unusually shallow. Mutual information analysis of panels of related kinase inhibitors will reveal
whether submaximal and shallow dose-response associates with drug, target or phenotype.
Aim 1.3 examines the role of time in pharmacology. Aim 1.3.1 investigates the phenomenon of
sequential drug synergy involving EGFR inhibitors and DNA damaging agents. Aim 1.3.2 investigates
transient drug resistance induced by paradoxical responses to compounds that are thought to be pro-apoptotic.
Aim 1.4 extends the analysis to a different therapeutic area, the response of Mycobacterium
tuberculosis (Mtb) to antibiotics; these studies follow up recent data showing that asymmetric division by Mtb
results in a cell-to-cell heterogeneity that impacts drug response.
项目总结
这一目标侧重于单细胞水平上剂量反应的决定因素。我们将检验这一假设
细胞间的非遗传可变性(由网络的相对水平或活动的变化引起
成分)在确定剂量-反应曲线的形状和最大治疗效果方面至关重要
这可以在药物浓度较高的情况下实现。随机变化的影响将与之形成对比
细胞周期状态和特殊谱系(如肿瘤干细胞)。这一目标的实验也检验了
癌症联合治疗中时机和暴露顺序的重要性。将执行除AIM 1.4以外的所有任务
使用在2D培养中生长的约10-40个癌细胞株的面板,并辅以较少数量的患者-
通过翻译药理学核心(目标5)获得的衍生培养。肿瘤的影响
将根据目标3.4的进展情况,审查关于剂量反应的微环境。目标1中的研究包括
与目标2中的不同之处在于,它们专注于表型,而不是对细胞内信号进行建模。
AIM 1.1将专注于癌症细胞系的遗传多样性及其对抗癌的反应
药物,主要是研究和批准的激酶抑制剂。AIM 1.1.1将使用固定细胞显微镜
使用细胞分裂的分子标记在单细胞水平上区分药物反应表型,
诱导衰老和凋亡(以及其他形式的细胞死亡,如自噬)。反应的变化
随着药物添加时间的推移,生理状态和基因型将在不同细胞类型和内部进行研究
基因同源群体中的单个细胞。目标1.1.2。遗嘱将使用突变信息(MI)和
将AIMS 1.1.1-1.1.2中的剂量反应参数与药物特性关联的其他方法,靶标
单元类型。AIM 1.1.3将用选定药物细胞系的活细胞成像补充固定细胞分析
确定响应如何随时间演变并区分出现的表型的组合
终点分析结果相似。AIM 1.1.4将把这些研究扩展到患者来源的品系和培养
目标是提高我们的发现与人类疾病的相关性。
AIM 1.2将确定细胞间异质性在分数反应和剂量反应中的作用
异常浅的曲线。对相关激酶抑制剂小组的互信息分析将揭示
亚极量和浅剂量反应是否与药物、靶点或表型有关。
Aim 1.3研究了时间在药理学中的作用。AIM 1.3.1调查以下现象
涉及EGFR抑制剂和DNA损伤剂的序贯药物协同作用。AIM 1.3.2调查
由对被认为是促细胞凋亡的化合物的矛盾反应而引起的暂时性耐药性。
Aim 1.4将分析扩展到不同的治疗领域,即分枝杆菌的反应
结核分枝杆菌(Mtb)对抗生素的敏感性;这些研究跟踪了最近的数据,显示Mtb的不对称分裂
导致细胞间的异质性,从而影响药物反应。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
PETER Karl SORGER其他文献
PETER Karl SORGER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('PETER Karl SORGER', 18)}}的其他基金
Pre-cancer atlases of cutaneous and hematologic origin (PATCH Center)
皮肤和血液来源的癌前图谱(PATCH 中心)
- 批准号:
10818803 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Systems Pharmacology of Therapeutic and Adverse Responses to ImmuneCheckpoint and Small Molecule Drugs
免疫检查点和小分子药物治疗和不良反应的系统药理学
- 批准号:
10405812 - 财政年份:2021
- 资助金额:
$ 36.51万 - 项目类别:
Systems Pharmacology of Therapeutic and Adverse Responses to ImmuneCheckpoint and Small Molecule Drugs
免疫检查点和小分子药物治疗和不良反应的系统药理学
- 批准号:
10343835 - 财政年份:2018
- 资助金额:
$ 36.51万 - 项目类别:
Project 1: Multi-scale modeling of adaptive drug resistance in BRAF-mutant melanoma
项目 1:BRAF 突变黑色素瘤适应性耐药的多尺度建模
- 批准号:
10343839 - 财政年份:2018
- 资助金额:
$ 36.51万 - 项目类别:
Systems Pharmacology of Therapeutic and Adverse Responses to ImmuneCheckpoint and Small Molecule Drugs
免疫检查点和小分子药物治疗和不良反应的系统药理学
- 批准号:
9886211 - 财政年份:2018
- 资助金额:
$ 36.51万 - 项目类别:
Pharmaco Response Signatures and Disease Mechanism
药物反应特征和疾病机制
- 批准号:
8926239 - 财政年份:2014
- 资助金额:
$ 36.51万 - 项目类别:
相似海外基金
Can antibiotics disrupt biogeochemical nitrogen cycling in the coastal ocean?
抗生素会破坏沿海海洋的生物地球化学氮循环吗?
- 批准号:
2902098 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Studentship
The role of RNA repair in bacterial responses to translation-inhibiting antibiotics
RNA修复在细菌对翻译抑制抗生素的反应中的作用
- 批准号:
BB/Y004035/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
Metallo-Peptides: Arming Cyclic Peptide Antibiotics with New Weapons to Combat Antimicrobial Resistance
金属肽:用新武器武装环肽抗生素以对抗抗菌素耐药性
- 批准号:
EP/Z533026/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
Towards the sustainable discovery and development of new antibiotics
迈向新抗生素的可持续发现和开发
- 批准号:
FT230100468 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
ARC Future Fellowships
DYNBIOTICS - Understanding the dynamics of antibiotics transport in individual bacteria
DYNBIOTICS - 了解抗生素在单个细菌中转运的动态
- 批准号:
EP/Y023528/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
Engineering Streptomyces bacteria for the sustainable manufacture of antibiotics
工程化链霉菌用于抗生素的可持续生产
- 批准号:
BB/Y007611/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
The disulfide bond as a chemical tool in cyclic peptide antibiotics: engineering disulfide polymyxins and murepavadin
二硫键作为环肽抗生素的化学工具:工程化二硫多粘菌素和 murepavadin
- 批准号:
MR/Y033809/1 - 财政年份:2024
- 资助金额:
$ 36.51万 - 项目类别:
Research Grant
Role of phenotypic heterogeneity in mycobacterial persistence to antibiotics: Prospects for more effective treatment regimens
表型异质性在分枝杆菌对抗生素持久性中的作用:更有效治疗方案的前景
- 批准号:
494853 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Operating Grants
Imbalance between cell biomass production and envelope biosynthesis underpins the bactericidal activity of cell wall -targeting antibiotics
细胞生物量产生和包膜生物合成之间的不平衡是细胞壁靶向抗生素杀菌活性的基础
- 批准号:
2884862 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Studentship
Narrow spectrum antibiotics for the prevention and treatment of soft-rot plant disease
防治植物软腐病的窄谱抗生素
- 批准号:
2904356 - 财政年份:2023
- 资助金额:
$ 36.51万 - 项目类别:
Studentship