Genetic, Imaging, and Cognition study of Positive Valence Systems in Psychotic Syndromes
精神病综合征正价系统的遗传、影像和认知研究
基本信息
- 批准号:10019593
- 负责人:
- 金额:$ 63.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressBayesian ModelingBehaviorBehavior ControlBehavioralBiologicalBipolar DisorderBrainBrain imagingCandidate Disease GeneClinicalCognitionCognitiveConsensusConsummatory BehaviorCorpus striatum structureDataDatabasesDecision MakingDepositionDiagnosisDiagnosticDiagnostic and Statistical Manual of Mental DisordersDimensionsDiseaseEducational workshopEtiologyExpenditureFirst Degree RelativeFunctional Magnetic Resonance ImagingGeneticGenetic RiskGenotypeHealthHeritabilityImageIndividualIndividual DifferencesKnowledgeLaboratoriesLinkMajor Depressive DisorderMeasuresMental disordersMotivationNational Institute of Mental HealthNetherlandsNeurocognitiveParticipantPatientsPhenotypePhysiciansPopulationPositive ValencePrefrontal CortexProcessProtocols documentationResearchResearch PersonnelResearch Project SummariesRewardsRiskSamplingSchizophreniaSiblingsSpecific qualifier valueStructureSymptomsSyndromeSystemTaxonomyTestingVariantbehavior measurementbrain circuitrycognitive functioncognitive taskcognitive testingcohortcomparison groupcostdesignfinancial incentivegenetic architecturegenetic risk factorgenetic variantgenome sequencinggenome-widegenome-wide analysislearning strategyneural circuitneuroimagingneuropsychiatric disorderprecision medicinepsychiatric genomicspsychologicresponsereward expectancyscreeningtraitweb-based assessmentwhole genome
项目摘要
Project Summary
The Research Domains Criteria (RDoC) initiative was developed by the NIMH to address growing concern
about the validity of the Diagnostic and Statistical Manual of Mental Disorders (DSM) and its potential to limit
research on mental illness. The overarching aim of RDoC to identify dimensions of brain structure and function
that will possess greater biological validity than our current taxonomy holds great promise for rational diagnosis
and treatment of mental illness. The proposed study aims to examine one of the core components of RDoC
that is focused on reward circuits and behavior, namely the Positive Valence Systems domain (PVS). The
PVS has been linked to diverse psychiatric disorders including schizophrenia, bipolar disorder and major
depressive disorder. There is consensus that schizophrenia and bipolar disorder share substantial genetic
risk and multiple overlapping phenotypic variations at the levels of corticostriatal brain circuits, cognitive
functions, and behavior. Yet it remains unknown precisely which dimensions are shared, which may diverge
between syndromes, and how the associated phenotypes relate to shared and non-shared genetic risk. The
proposed research will examine the RDoC PVS domains in two large genetically informative cohorts
comprising more than 5,000 individuals already ascertained in the Netherlands. Participants include 1,000
schizophrenia patients, 1,750 subjects with bipolar disorder, more than 1,000 first-degree relatives and almost
1,500 healthy comparison subjects. Extensive clinical and neurocognitive data is already available, which will
contribute significantly to our understanding of basic brain circuitry that controls behavior in health and disease.
Available genome-wide genotype and whole genome sequencing data provide a unique opportunity to
examine the heritability of the PVS measures and its relationship with the etiology of psychiatric disorder.
We will collect multi-level data pertaining to each of the four primary PVS component processes identified by
the RDoC Workshop focused on Reward Seeking and Consummatory Behavior (Approach Motivation) through
online assessments of these cognitive constructs. These will be further validated by in-laboratory measures
using functional MRI in a subset of participants (n=500). Analyses will focus on the ventral striatal (VS) and
ventromedial prefrontal cortex (vmPFC) responses to anticipation and receipt of reward. We will derive
response profiles from the four PVS cognitive tests that possess greatest concurrent validity with respect to
individual differences in neural circuit function.
Results of this study will provide important new data about the relations of the PVS component processes
proposed in RDoC to the primary neural circuits, and enable the results in our genetically informative samples
to be evaluated in the context of research on a broad range of mental disorders and healthy individuals.
项目摘要
研究领域标准(RDoC)倡议是由NIMH制定的,以解决日益增长的担忧
关于《精神障碍诊断和统计手册》(DSM)的有效性及其限制潜力
关于精神疾病的研究。RDoC的首要目标是确定大脑结构和功能的维度
这将具有更大的生物学有效性,而不是我们目前的分类学为理性诊断带来的巨大希望
以及精神疾病的治疗。这项拟议的研究旨在研究RDoC的核心组成部分之一
这是集中在奖励电路和行为,即正价系统域(PVS)。这个
PVS与多种精神疾病有关,包括精神分裂症、双相情感障碍和严重的
抑郁障碍。人们一致认为精神分裂症和双相情感障碍具有相同的基因
皮质纹状体脑回路、认知水平的风险和多个重叠表型变异
功能和行为。然而,确切地说,哪些维度是共享的,哪些维度可能会出现分歧,目前还不清楚
症状之间的关系,以及相关的表型如何与共同和非共同的遗传风险相关。这个
拟议的研究将在两个具有遗传信息的大型队列中检查RDoC PVS结构域
由荷兰已经确认的5000多人组成。参与者包括1,000人
精神分裂症患者,1750名双相情感障碍患者,1000多名一级亲属和几乎
1500名健康对照受试者。大量的临床和神经认知数据已经可用,这将
对我们理解控制健康和疾病行为的基本大脑回路有很大帮助。
可用的全基因组基因型和全基因组测序数据提供了一个独特的机会
检查PVS测量的遗传度及其与精神障碍病因学的关系。
我们将收集与确定的四个主要PVS组件进程相关的多层次数据
RDoC研讨会的重点是通过以下方式寻求奖励和消费行为(接近动机)
对这些认知结构的在线评估。这些将通过实验室内的测量得到进一步验证
在一组参与者(n=500)中使用功能磁共振成像。分析将集中在腹侧纹状体(VS)和
腹内侧前额叶皮质(VmPFC)对预期和接受奖励的反应。我们将派生出
来自四个PVS认知测试的反应简档,这些测试相对于以下方面具有最大的同时有效性
神经回路功能的个体差异。
这项研究的结果将为PVS组分过程之间的关系提供重要的新数据
在RDoC中提出的对初级神经回路的研究,并在我们的遗传信息样本中实现结果
将在对广泛的精神障碍和健康个人进行研究的背景下进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ROBERT M BILDER其他文献
ROBERT M BILDER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ROBERT M BILDER', 18)}}的其他基金
Genetic, Imaging, and Cognition study of Positive Valence Systems in Psychotic Syndromes
精神病综合征正价系统的遗传、影像和认知研究
- 批准号:
10468990 - 财政年份:2018
- 资助金额:
$ 63.62万 - 项目类别:
Genetic, Imaging, and Cognition study of Positive Valence Systems in Psychotic Syndromes
精神病综合征正价系统的遗传、影像和认知研究
- 批准号:
10248440 - 财政年份:2018
- 资助金额:
$ 63.62万 - 项目类别:
Multi-Level Assays of Working Memory and Psychopathology
工作记忆和精神病理学的多层次分析
- 批准号:
8839303 - 财政年份:2014
- 资助金额:
$ 63.62万 - 项目类别:
Multi-Level Assays of Working Memory and Psychopathology
工作记忆和精神病理学的多层次分析
- 批准号:
8691457 - 财政年份:2014
- 资助金额:
$ 63.62万 - 项目类别:
Multi-Level Assays of Working Memory and Psychopathology
工作记忆和精神病理学的多层次分析
- 批准号:
8881584 - 财政年份:2014
- 资助金额:
$ 63.62万 - 项目类别:
COGNITIVE PHENOTYPING: NEUROPSYCHIATRIC THERAPEUTICS (RMI)
认知表型:神经精神治疗 (RMI)
- 批准号:
8363445 - 财政年份:2011
- 资助金额:
$ 63.62万 - 项目类别:
COGNITIVE PHENOTYPING: NEUROPSYCHIATRIC THERAPEUTICS (RMI)
认知表型:神经精神治疗 (RMI)
- 批准号:
8171066 - 财政年份:2010
- 资助金额:
$ 63.62万 - 项目类别:
COGNITIVE PHENOTYPING: NEUROPSYCHIATRIC THERAPEUTICS (RMI)
认知表型:神经精神治疗 (RMI)
- 批准号:
7955677 - 财政年份:2009
- 资助金额:
$ 63.62万 - 项目类别:
相似海外基金
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 63.62万 - 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
- 批准号:
10730714 - 财政年份:2023
- 资助金额:
$ 63.62万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2022
- 资助金额:
$ 63.62万 - 项目类别:
Discovery Grants Program - Individual
Bayesian modeling on ethical consumption and its empirical application for behavior modification
道德消费的贝叶斯模型及其在行为矫正中的实证应用
- 批准号:
21K18559 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10684720 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Discovery Grants Program - Individual
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10490301 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Bayesian Modeling of Mass-Spec Proteomics Data to Advance Studies of the Genetic Regulation of Proteins
质谱蛋白质组数据的贝叶斯建模推进蛋白质遗传调控的研究
- 批准号:
10391171 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Utilizing Bayesian modeling to improve mutational signature inference in large-scale datasets
利用贝叶斯建模改进大规模数据集中的突变特征推断
- 批准号:
10305242 - 财政年份:2021
- 资助金额:
$ 63.62万 - 项目类别:
Bayesian Modeling and Scalable Inference for Big Data Streams
大数据流的贝叶斯建模和可扩展推理
- 批准号:
RGPIN-2019-03962 - 财政年份:2020
- 资助金额:
$ 63.62万 - 项目类别:
Discovery Grants Program - Individual