Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
基本信息
- 批准号:RGPIN-2018-05911
- 负责人:
- 金额:$ 1.68万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2019
- 资助国家:加拿大
- 起止时间:2019-01-01 至 2020-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The popularity and diverse uses of online social networks (OSNs) give incentives to hackers and cybercriminals to carry out attacks using malicious software (malware). Given large populations of major OSNs (e.g., more than one billion users on Facebook), a successful attack can result in tens of millions of user profiles being compromised and computers/devices being infected. Thus the objectives of this research program are to model the propagation dynamics of malware in OSNs and, based on the obtained models and parameter analyses, to propose a comprehensive, effective countermeasure system to detect, contain and remove malware in their early stages of propagation. Our research program consists of three closely related objectives: (1) surveys and data collection; (2) analytical modeling and parameter analyses; and (3) design and evaluation of countermeasures.******First, we conduct crowdsourced surveys to study user browsing behavior such as frequency of visits, visiting hours, visit duration, habits of viewing new posts and private messages, and user security awareness and practices. We also collect data on current anti-virus (AV) products, their effectiveness against unknown samples, and the pace at which AV vendors released updates in response to past attacks. ******We develop novel analytical models that address shortcomings of existing models, which assume generic malware. Specifically, our proposed models faithfully capture the inner working mechanics of each type of real-world malware (e.g., cross-site scripting worms vs. Trojans) and their spreading mechanisms. We incorporate into the models factors not considered in existing models, namely, user browsing habits, user security awareness and practices, time zone, and the patching rate of AV products, all of which significantly impact the propagation speed of malware. We validate the models and perform parameter analyses using real social network graphs and the data collected earlier.******Using numerical results from the models and the parameter analyses, we design, implement and evaluate a novel comprehensive countermeasure system against OSN malware. The system consists of both proactive measures (resource-efficient detection of malware) and reactive measures (warnings of attacks, distribution of patches, containment and removal of malware). We evaluate the performance of the proposed countermeasures via formal analytical modeling and discrete-event simulations.******The outcomes of this research program will help make OSNs a safer place for Internet users to socialize, interact, network, read news, enjoy entertainments, and conduct financial transactions. By defending OSNs, this research program contributes towards protecting Internet infrastructures, enterprise and government networks, and individuals' computers and devices from attacks such as ransomware, denial-of-service attacks, identity thefts and data thefts.
在线社交网络(OSN)的流行和多样化使用促使黑客和网络犯罪分子使用恶意软件(恶意软件)进行攻击。考虑到主要OSN的大量人口(例如,Facebook上有超过10亿用户),成功的攻击可能导致数千万用户配置文件受损,计算机/设备受到感染。因此,本研究计划的目标是在OSN的恶意软件的传播动态建模,并根据所获得的模型和参数分析,提出一个全面的,有效的对策系统,以检测,包含和删除恶意软件在其传播的早期阶段。我们的研究计划包括三个密切相关的目标:(1)调查和数据收集;(2)分析建模和参数分析;(3)对策的设计和评估。首先,我们进行众包调查,研究用户浏览行为,如访问频率、访问时间、访问时长、查看新帖子和私信的习惯,以及用户安全意识和实践。我们还收集有关当前防病毒(AV)产品的数据,它们对未知样本的有效性,以及AV供应商发布更新以应对过去攻击的速度。** 我们开发了新的分析模型,解决了现有模型的缺点,这些模型假设了一般的恶意软件。具体来说,我们提出的模型忠实地捕捉了每种类型的真实世界恶意软件的内部工作机制(例如,跨站点脚本蠕虫与特洛伊木马)及其传播机制。我们将现有模型中未考虑的因素纳入模型中,即用户浏览习惯,用户安全意识和实践,时区以及AV产品的修补率,所有这些都显着影响恶意软件的传播速度。我们使用真实的社交网络图和之前收集的数据来验证模型并进行参数分析。**利用模型和参数分析的数值结果,我们设计,实现和评估一种新的综合对策系统对OSN恶意软件。该系统包括主动措施(资源有效的恶意软件检测)和反应措施(攻击警告,补丁分发,遏制和删除恶意软件)。我们通过正式的分析建模和离散事件模拟评估所提出的对策的性能。**这项研究计划的成果将有助于使OSN成为互联网用户社交,互动,网络,阅读新闻,享受娱乐和进行金融交易的更安全的地方。通过保护OSN,该研究计划有助于保护互联网基础设施,企业和政府网络以及个人计算机和设备免受勒索软件,拒绝服务攻击,身份盗窃和数据盗窃等攻击。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nguyen, UyenTrang其他文献
Nguyen, UyenTrang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nguyen, UyenTrang', 18)}}的其他基金
Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
- 批准号:
RGPIN-2018-05911 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
- 批准号:
RGPIN-2018-05911 - 财政年份:2021
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
- 批准号:
RGPIN-2018-05911 - 财政年份:2020
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Malware in Online Social Networks: Modeling of Propagation Dynamics and Countermeasures
在线社交网络中的恶意软件:传播动力学建模和对策
- 批准号:
RGPIN-2018-05911 - 财政年份:2018
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Network Coding Based Multicast in Multi-channel Multi-radio Wireless Mesh Networks
多信道多无线电无线网状网络中基于网络编码的组播
- 批准号:
261555-2013 - 财政年份:2017
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Network Coding Based Multicast in Multi-channel Multi-radio Wireless Mesh Networks
多信道多无线电无线网状网络中基于网络编码的组播
- 批准号:
261555-2013 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Secure, self-organized, self-powered networks of low-energy proximity beacons
安全、自组织、自供电的低能耗邻近信标网络
- 批准号:
499388-2016 - 财政年份:2016
- 资助金额:
$ 1.68万 - 项目类别:
Engage Grants Program
Network Coding Based Multicast in Multi-channel Multi-radio Wireless Mesh Networks
多信道多无线电无线网状网络中基于网络编码的组播
- 批准号:
261555-2013 - 财政年份:2015
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Network Coding Based Multicast in Multi-channel Multi-radio Wireless Mesh Networks
多信道多无线电无线网状网络中基于网络编码的组播
- 批准号:
261555-2013 - 财政年份:2014
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
Network Coding Based Multicast in Multi-channel Multi-radio Wireless Mesh Networks
多信道多无线电无线网状网络中基于网络编码的组播
- 批准号:
261555-2013 - 财政年份:2013
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国青年学者研究基金项目
online SPE/HPLC-ICP-MS多元素形态分析新方法研究荷塘中铬砷镉汞铅的迁移转化规律
- 批准号:21976048
- 批准年份:2019
- 资助金额:65.0 万元
- 项目类别:面上项目
双积分政策下基于Online Review的新能源汽车企业跨链决策优化研究
- 批准号:71964023
- 批准年份:2019
- 资助金额:27.5 万元
- 项目类别:地区科学基金项目
面向Online-to-Offline智能商务的大数据融合与应用
- 批准号:91646204
- 批准年份:2016
- 资助金额:201.0 万元
- 项目类别:重大研究计划
Online-to-Offline商务环境下"切客"一族生活模式挖掘研究
- 批准号:71172046
- 批准年份:2011
- 资助金额:41.0 万元
- 项目类别:面上项目
相似海外基金
The Impact of Online Social Interactions on Adolescent Cognition
在线社交互动对青少年认知的影响
- 批准号:
DE240101039 - 财政年份:2024
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Early Career Researcher Award
RAPID: SaTC: CORE: Monitoring Social Media for Devising Improved Safeguards Online
RAPID:SaTC:核心:监控社交媒体以制定改进的在线保障措施
- 批准号:
2309318 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Trust-Oriented Data Analytics in Online Social Networks
在线社交网络中面向信任的数据分析
- 批准号:
DP230100676 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Projects
Algorithmic Hauntings: miscarriage and grief in online social media
算法困扰:在线社交媒体中的流产和悲伤
- 批准号:
2890103 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Studentship
Caregiver as Navigator-Developing Skills Online (CAN-DO): Developing Dementia Family Caregiver Mastery for Navigating Complex Health, Social Service, Legal, Financial, and Family Systems
护理人员作为在线导航员发展技能 (CAN-DO):培养痴呆症家庭护理人员掌握复杂的健康、社会服务、法律、财务和家庭系统的能力
- 批准号:
10722672 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Auditing Social Media Algorithmic Pathways to Measure Prevalence of Online Misinformation Related to Opioid Misuse
审核社交媒体算法路径以衡量与阿片类药物滥用相关的在线错误信息的流行程度
- 批准号:
10666308 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
Social media as a social mechanism of non-cigarette tobacco use: Engaging young adults to examine tobacco culture online
社交媒体作为非卷烟烟草使用的社会机制:让年轻人在线审视烟草文化
- 批准号:
10667700 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
The SE-Learn Online Professional Development Platform for Enhanced Social Emotional Learning with Students
SE-Learn 在线专业发展平台,增强学生的社交情感学习
- 批准号:
10601591 - 财政年份:2023
- 资助金额:
$ 1.68万 - 项目类别:
EAGER: DCL: SaTC: Enabling Interdisciplinary Collaboration: Deplatforming and Online Hate Speech Across the Social Media Ecology
EAGER:DCL:SaTC:实现跨学科合作:社交媒体生态中的去平台化和在线仇恨言论
- 批准号:
2210023 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Standard Grant
Multiagent trust modeling for trusted AI and improved online social networks
用于可信人工智能和改进的在线社交网络的多代理信任建模
- 批准号:
RGPIN-2021-02389 - 财政年份:2022
- 资助金额:
$ 1.68万 - 项目类别:
Discovery Grants Program - Individual