Integrative analysis of single-cell multi-omics data with interpretable deep learning methods
利用可解释的深度学习方法对单细胞多组学数据进行综合分析
基本信息
- 批准号:RGPIN-2020-06189
- 负责人:
- 金额:$ 3.93万
- 依托单位:
- 依托单位国家:加拿大
- 项目类别:Discovery Grants Program - Individual
- 财政年份:2022
- 资助国家:加拿大
- 起止时间:2022-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Recent advances in single-cell multi-omics sequencing (e.g., RNA-seq and ATAC-seq) technologies have increased the sensitivity in quantifying both transcriptome and epigenome landscapes of complex biological systems at the single-cell level, providing novel insights into detecting cell heterogeneity and understanding disease pathogenesis. The emerging multi-omics technologies generate copious heterogenous datasets across different cell types in multiple tissues using various platforms and modalities. Integrative analysis of multi-omics datasets is in great demand and is vital to unveil the underlying biological processes and disease pathogenesis of single cells. However, the ocean of noisy single-cell data poses unprecedented challenges to biologists and clinicians, calling for novel and large-scale machine learning algorithms to address these challenges. The main goal of the proposed multi-disciplinary project is to bridge the fields of genetic biology and computer science to develop a first-in-class, large-scale and interpretable machine learning tool to integrate heterogeneous single-cell omics datasets across different technological platforms and modalities. We will model single-cell multi-omics data using graph convolutional networks in the form of cell-to-cell, cell-to-gene, and gene-to-gene graphs (i.e. interaction networks). Graph convolutional network (GCN) is a new end-to-end deep neural network that learns convolutional high-order structures on graphs and automatically learn representations of nodes (i.e., cells or genes), therefore enabling down-streaming applications such as defining novel cell types and detecting driver genes. Recent establishment of applying convolutional operators on sparse graphs sheds light on potential directions of deep learning algorithms to analyze single-cell data. We propose to extend this method to allow for joint cell-type detection and differential gene selection. We will also incorporate explanatory artificial intelligence in our method that will enable biologists and clinicians to understand the integration processes of the networks. We propose to validate our algorithms on a private dataset as well as public consortium single-cell multi-omics datasets such as Human Cell ATLAS. Given such a large number of cells across so many heterogeneous technological platforms and modalities, our proposed method based on deep neural networks will demonstrate its scalability, higher accuracy and interpretability over many existing computational tools. This research project has the potential of revolutionizing the integrative analysis of single-cell multi-omics datasets, helping the biologists and clinicians better understand the biological process and disease pathogenesis of single cells, and ultimately moving us closer to precision medicine that benefits individual patients.
单细胞多组学测序(例如RNA-seq和ATAC-seq)技术的最新进展提高了在单细胞水平上量化复杂生物系统的转录组和表观基因组景观的灵敏度,为检测细胞异质性和了解疾病发病机制提供了新的见解。新兴的多组学技术使用各种平台和模式在多个组织中的不同细胞类型中生成大量异质数据集。多组学数据集的综合分析需求量很大,对于揭示单细胞的潜在生物过程和疾病发病机制至关重要。然而,嘈杂的单细胞数据海洋给生物学家和临床医生带来了前所未有的挑战,需要新颖的大规模机器学习算法来应对这些挑战。 拟议的多学科项目的主要目标是连接遗传生物学和计算机科学领域,开发一流的、大规模的、可解释的机器学习工具,以跨不同技术平台和模式整合异构单细胞组学数据集。我们将使用细胞到细胞、细胞到基因和基因到基因图(即相互作用网络)形式的图卷积网络对单细胞多组学数据进行建模。 图卷积网络(GCN)是一种新的端到端深度神经网络,它学习图上的卷积高阶结构并自动学习节点(即细胞或基因)的表示,从而实现下游应用,例如定义新的细胞类型和检测驱动基因。最近在稀疏图上应用卷积算子的建立揭示了深度学习算法分析单细胞数据的潜在方向。我们建议扩展该方法以允许联合细胞类型检测和差异基因选择。我们还将在我们的方法中纳入解释性人工智能,使生物学家和临床医生能够了解网络的集成过程。我们建议在私有数据集以及公共联盟单细胞多组学数据集(例如人类细胞 ATLAS)上验证我们的算法。 鉴于跨多种异构技术平台和模式的大量细胞,我们提出的基于深度神经网络的方法将证明其比许多现有计算工具具有可扩展性、更高的准确性和可解释性。该研究项目有望彻底改变单细胞多组学数据集的综合分析,帮助生物学家和临床医生更好地了解单细胞的生物过程和疾病发病机制,最终使我们更接近造福个体患者的精准医疗。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wang, Bo其他文献
Gut mycobiome dysbiosis after sepsis and trauma.
- DOI:
10.1186/s13054-023-04780-4 - 发表时间:
2024-01-11 - 期刊:
- 影响因子:15.1
- 作者:
Park, Gwoncheol;Munley, Jennifer A.;Kelly, Lauren S.;Kannan, Kolenkode B.;Mankowski, Robert T.;Sharma, Ashish;Upchurch, Gilbert;Casadesus, Gemma;Chakrabarty, Paramita;Wallet, Shannon M.;Maile, Robert;Bible, Letitia E.;Wang, Bo;Moldawer, Lyle L.;Mohr, Alicia M.;Efron, Philip A.;Nagpal, Ravinder - 通讯作者:
Nagpal, Ravinder
SIRT1 Is Downregulated in Gastric Cancer and Leads to G1-phase Arrest via NF-kappaB/Cyclin D1 Signaling.
SIRT1 在胃癌中下调,并通过 NF-kappaB/Cyclin D1 信号传导导致 G1 期停滞。
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:5.2
- 作者:
Yang, Qing;Wang, Bo;Gao, Wei;Huang, Shanying;Liu, Zhifang;Li, Wenjuan;Jia, Jihui - 通讯作者:
Jia, Jihui
Exploiting MATE efflux proteins to improve flavonoid accumulation in Camellia sinensis in silico
- DOI:
10.1016/j.ijbiomac.2019.10.028 - 发表时间:
2020-01-15 - 期刊:
- 影响因子:8.2
- 作者:
Chen, Guanming;Liang, Haohong;Wang, Bo - 通讯作者:
Wang, Bo
Immunogenicity and antigenicity of Plasmodium vivax merozoite surface protein 10
- DOI:
10.1007/s00436-014-3907-8 - 发表时间:
2014-07-01 - 期刊:
- 影响因子:2
- 作者:
Cheng, Yang;Wang, Bo;Han, Eun-Taek - 通讯作者:
Han, Eun-Taek
Recent Advances in Structural Optimization and Surface Modification on Current Collectors for High-Performance Zinc Anode: Principles, Strategies, and Challenges.
- DOI:
10.1007/s40820-023-01177-4 - 发表时间:
2023-08-31 - 期刊:
- 影响因子:26.6
- 作者:
Gong, Yuxin;Wang, Bo;Ren, Huaizheng;Li, Deyu;Wang, Dianlong;Liu, Huakun;Dou, Shixue - 通讯作者:
Dou, Shixue
Wang, Bo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Wang, Bo', 18)}}的其他基金
Integrative analysis of single-cell multi-omics data with interpretable deep learning methods
利用可解释的深度学习方法对单细胞多组学数据进行综合分析
- 批准号:
RGPIN-2020-06189 - 财政年份:2021
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
Integrative analysis of single-cell multi-omics data with interpretable deep learning methods
利用可解释的深度学习方法对单细胞多组学数据进行综合分析
- 批准号:
DGECR-2020-00294 - 财政年份:2020
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Launch Supplement
Integrative analysis of single-cell multi-omics data with interpretable deep learning methods
利用可解释的深度学习方法对单细胞多组学数据进行综合分析
- 批准号:
RGPIN-2020-06189 - 财政年份:2020
- 资助金额:
$ 3.93万 - 项目类别:
Discovery Grants Program - Individual
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
Intelligent Patent Analysis for Optimized Technology Stack Selection:Blockchain BusinessRegistry Case Demonstration
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
利用全基因组关联分析和QTL-seq发掘花生白绢病抗性分子标记
- 批准号:31971981
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
基于SERS纳米标签和光子晶体的单细胞Western Blot定量分析技术研究
- 批准号:31900571
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
利用多个实验群体解析猪保幼带形成及其自然消褪的遗传机制
- 批准号:31972542
- 批准年份:2019
- 资助金额:57.0 万元
- 项目类别:面上项目
基于Meta-analysis的新疆棉花灌水增产模型研究
- 批准号:41601604
- 批准年份:2016
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于个体分析的投影式非线性非负张量分解在高维非结构化数据模式分析中的研究
- 批准号:61502059
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
多目标诉求下我国交通节能减排市场导向的政策组合选择研究
- 批准号:71473155
- 批准年份:2014
- 资助金额:60.0 万元
- 项目类别:面上项目
大规模微阵列数据组的meta-analysis方法研究
- 批准号:31100958
- 批准年份:2011
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于物质流分析的中国石油资源流动过程及碳效应研究
- 批准号:41101116
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Integrative modelling of single-cell data to elucidate the genetic architecture of complex disease
单细胞数据的综合建模以阐明复杂疾病的遗传结构
- 批准号:
10889304 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
The Role of Sex Hormones in Stroke Risk: A Sex-Specific Integrative Omics Analysis in the NHLBI Trans-Omics for Precision Medicine Cohorts
性激素在中风风险中的作用:精准医学队列 NHLBI 跨组学中性别特异性综合组学分析
- 批准号:
10657840 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Integrative analysis of the stochasticity of single-cell omics data for predicting pioneerness of transcription factors
单细胞组学数据随机性的综合分析用于预测转录因子的先驱性
- 批准号:
23K14165 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Delineating the functional impact of recurrent repeat expansions in ALS using integrative multiomic analysis
使用综合多组学分析描述 ALS 中反复重复扩增的功能影响
- 批准号:
10776994 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Harnessing single cell RNA sequencing and integrative bioinformatics to identify precision therapeutics for dermatomyositis
利用单细胞 RNA 测序和综合生物信息学确定皮肌炎的精准治疗方法
- 批准号:
10573015 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Integrative Multiomics to Uncover Novel Genes and Networks in Pulmonary Arterial Hypertension
综合多组学揭示肺动脉高压的新基因和网络
- 批准号:
10723950 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Integrative analysis of spatial transcriptomics with histology images and single cells
空间转录组学与组织学图像和单细胞的综合分析
- 批准号:
10733815 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Integrative genomic and functional genomic studies to connect variant to function for CAD GWAS loci
整合基因组和功能基因组研究,将 CAD GWAS 位点的变异与功能联系起来
- 批准号:
10639274 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别:
Integrative analysis of multi-omic signatures and cellular function in human pancreas across developmental timeline at single-cell spatial resolution
以单细胞空间分辨率对人类胰腺跨发育时间线的多组学特征和细胞功能进行综合分析
- 批准号:
10776295 - 财政年份:2023
- 资助金额:
$ 3.93万 - 项目类别: