Mathematical Sciences: Program in Computational and Applied Mathematics
数学科学:计算与应用数学课程
基本信息
- 批准号:9306488
- 负责人:
- 金额:$ 27.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:1993
- 资助国家:美国
- 起止时间:1993-08-15 至 1997-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
9306720 Caflisch Vortical and convective fluid flows are important for a wide range of phenomena, such as fluid mixing, flow around airfoils and obstacles, and turbulence. In this project the investigator undertakes research in three related topics: (1) Dynamics, instabilities and singularity formation for axisymmetric, swirling vortex sheets are studied through bifurcation analysis and numerical computation, with applications to vortex breakdown. (2) The effective diffusion rate for a convective flow is studied for flows with randomness and time-dependence. (3) Singularities are investigated for systems of PDE's through a combination of PDE theory, algebraic geometry (catastrophe theory), symbolic computation, and numerical simulation. The research in this proposal is for analysis and numerical computation of complex fluid flows, such as occur in many problems of scientific and technological importance. Effective understanding and application of these flows requires a description of both their microscopic and their macroscopic features. This investigation first focuses on singularities as a fine-scale phenomena in idealized flows. A macroscopic description of flows is also developed through homogenization of the microscopic variations. The results from this study will be important in assessing the qualitative features of complex flows,as well as in the development of effective computational methods. *** 9306720 Caflisch Vortical and convective fluid flows are important for a wide range of phenomena, such as fluid mixing, flow around airfoils and obstacles, and turbulence. In this project the investigator undertakes research in three related topics: (1) Dynamics, instabilities and singularity formation for axisymmetric, swirling vortex sheets are studied through bifurcation analysis and numerical computation, with applications to vortex breakdown. (2) The effective diffusion rate for a convective flow is studied for flows with randomness and time-dependence. (3) Singularities are investigated for systems of PDE's through a combination of PDE theory, algebraic geometry (catastrophe theory), symbolic computation, and numerical simulation. The research in this proposal is for analysis and numerical computation of complex fluid flows, such as occur in many problems of scientific and technological importance. Effective understanding and application of these flows requires a description of both their microscopic and their macroscopic features. This investigation first focuses on singularities as a fine-scale phenomena in idealized flows. A macroscopic description of flows is also developed through homogenization of the microscopic variations. The results from this study will be important in assessing the qualitative features of complex flows, as well as in the development of effective computational methods. ***
小行星9306720 涡流和对流流体流动对于广泛的现象是重要的,例如流体混合、围绕翼型和障碍物的流动以及湍流。 (1)通过分叉分析和数值计算研究了轴对称旋转涡面的动力学、不稳定性和奇异性的形成,并将其应用于涡破裂。 (2)研究了具有随机性和时间依赖性的对流流动的有效扩散率。(3)奇异性研究系统的偏微分方程的通过相结合的偏微分方程理论,代数几何(突变理论),符号计算和数值模拟。 本项目的研究内容是对复杂流体流动的分析和数值计算,例如在许多科学和技术重要性问题中出现的问题。 要有效地理解和应用这些流动,就需要描述它们的微观和宏观特征。 本研究首先集中在奇异性作为一个细尺度的现象,在理想化的流动。 流动的宏观描述也通过微观变化的均匀化发展。 从这项研究的结果将是重要的,在评估复杂的流动的定性特征,以及在有效的计算方法的发展。 * 9306720卡弗利施 涡流和对流流体流动对于广泛的现象是重要的,例如流体混合、围绕翼型和障碍物的流动以及湍流。 (1)通过分叉分析和数值计算研究了轴对称旋转涡面的动力学、不稳定性和奇异性的形成,并将其应用于涡破裂。 (2)研究了具有随机性和时间依赖性的对流流动的有效扩散率。(3)奇异性研究系统的偏微分方程的通过相结合的偏微分方程理论,代数几何(突变理论),符号计算和数值模拟。 本项目的研究内容是对复杂流体流动的分析和数值计算,例如在许多科学和技术重要性问题中出现的问题。 要有效地理解和应用这些流动,就需要描述它们的微观和宏观特征。 本研究首先集中在奇异性作为一个细尺度的现象,在理想化的流动。 流动的宏观描述也通过微观变化的均匀化发展。 从这项研究的结果将是重要的,在评估复杂的流动的定性特征,以及在有效的计算方法的发展。 ***
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Russel Caflisch其他文献
Russel Caflisch的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Russel Caflisch', 18)}}的其他基金
IRES: Research in Industrial Projects for Students (RIPS) - Hong Kong
IRES:学生工业项目研究 (RIPS) - 香港
- 批准号:
1129816 - 财政年份:2012
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Institute for Pure and Applied Mathematics
纯粹与应用数学研究所
- 批准号:
0931852 - 财政年份:2010
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
IRES: International Research in Industrial Projects for Students (Beijing)
IRES:学生工业项目国际研究(北京)
- 批准号:
0652051 - 财政年份:2007
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Collaborative Research: Numerics and Analysis of Singularities for the Euler Equations
合作研究:欧拉方程的数值和奇异性分析
- 批准号:
0707557 - 财政年份:2007
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Institute for Pure and Applied Mathematics Renewal
纯粹与应用数学更新研究所
- 批准号:
0439872 - 财政年份:2005
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Singularity Formation for the Three-Dimensional Euler Equations and Related Problems
FRG:协作研究:三维欧拉方程的奇异性形成及相关问题
- 批准号:
0354488 - 财政年份:2004
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Kinetic Pathways to Formation and Self-Organization of Quantum Dots
量子点形成和自组织的动力学途径
- 批准号:
0402276 - 财政年份:2004
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Modeling and Simulation for Epitaxial Growth
外延生长的建模与仿真
- 批准号:
0074152 - 财政年份:2000
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Kinetic Monte Carlo Methods for Epitaxial Growth
外延生长的动力学蒙特卡罗方法
- 批准号:
0072919 - 财政年份:2000
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Mathematical Sciences: VIP/Virtual Integrated Prototyping for Epitaxial Growth
数学科学:用于外延生长的 VIP/虚拟集成原型制作
- 批准号:
9615854 - 财政年份:1997
- 资助金额:
$ 27.4万 - 项目类别:
Cooperative Agreement
相似国自然基金
Handbook of the Mathematics of the Arts and Sciences的中文翻译
- 批准号:12226504
- 批准年份:2022
- 资助金额:20.0 万元
- 项目类别:数学天元基金项目
SCIENCE CHINA: Earth Sciences
- 批准号:41224003
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21224005
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Information Sciences
- 批准号:61224002
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51224001
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Life Sciences (中国科学 生命科学)
- 批准号:81024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Journal of Environmental Sciences
- 批准号:21024806
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Earth Sciences(中国科学:地球科学)
- 批准号:41024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
SCIENCE CHINA Technological Sciences
- 批准号:51024803
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
The Inclusive Mathematical and Physical Sciences Student Success Program
包容性数学和物理科学学生成功计划
- 批准号:
2322454 - 财政年份:2023
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
REU Site: Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
2149642 - 财政年份:2022
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
REU Site: National Research Experiences for Undergraduates Program in the Mathematical Sciences
REU 网站:数学科学本科生项目国家研究经验
- 批准号:
1950644 - 财政年份:2020
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
REU Site: The Mathematical Sciences Research Institute Undergraduate Program (MSRI-UP)
REU 网站:数学科学研究所本科项目 (MSRI-UP)
- 批准号:
1659138 - 财政年份:2017
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
REU Site: National Research Experiences for Undergraduates Program in the Mathematical Sciences (NREUP)
REU 网站:数学科学本科生国家研究经验项目 (NREUP)
- 批准号:
1652506 - 财政年份:2017
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
An Innovative Bridge Program for Mentoring BS-MS Fast-Track Students towards PhDs in Mathematical Sciences
指导 BS-MS 快速通道学生攻读数学科学博士学位的创新桥梁计划
- 批准号:
1620630 - 财政年份:2016
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
Mathematical Sciences Program at SACNAS, October 15-18, 2014
SACNAS 数学科学项目,2014 年 10 月 15-18 日
- 批准号:
1443948 - 财政年份:2014
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant
The Salish Kootenai College Mathematical Sciences Program
萨利什库特奈学院数学科学项目
- 批准号:
1262779 - 财政年份:2013
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
CSUMS: A Computational Training and Interdisciplinary Research Program for Undergraduates in the Mathematical Sciences at the University of St. Thomas
CSUMS:圣托马斯大学数学科学本科生的计算培训和跨学科研究项目
- 批准号:
0802959 - 财政年份:2008
- 资助金额:
$ 27.4万 - 项目类别:
Continuing Grant
Program for Attracting and Retaining Scholars in Computer and Mathematical Sciences
吸引和留住计算机和数学科学学者的计划
- 批准号:
0806814 - 财政年份:2008
- 资助金额:
$ 27.4万 - 项目类别:
Standard Grant














{{item.name}}会员




