CAD Algorithms for Automated, Hierarchical, Bottom-Up Abstraction of Large Digital Aggressor Blocks for Supply and Substrate Noise Analysis

用于自动、分层、自下而上抽象大型数字干扰模块的 CAD 算法,用于电源和基板噪声分析

基本信息

  • 批准号:
    0541396
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2006
  • 资助国家:
    美国
  • 起止时间:
    2006-03-01 至 2009-02-28
  • 项目状态:
    已结题

项目摘要

ABSTRACT0541396Jaijeet RoychowdhuryU of Minnesota- Twin CitiesCAD Algorithms for Automated, Hierarchical, Bottom-Up Abstraction of Large Digital Agressor Blocks for Supply and Substrate Noise AnalysisToday, virtually every aspect of our technological society today relies on a variety of digital and mixed-signal integrated circuits (ICs), which are growing larger and more complex by the day. To continue to design such chips effectively, estimating the interference noise generated by large numbers of switching digital blocks has become exceedingly important. Increasing levels of current drawn, higher switching speeds (clock frequencies) and falling supply voltages in new technologies conspire to worsen levels of interference noise and to exacerbate its debilitating impact on system functionality and performance. Interference noise that has not been correctly estimated and contained leads to failed production runs, delays in design turnaround,increased development costs and longer times to market. In this project, algorithms, methodologies and prototype CAD tools for predicting digital interference noise will be developed. The core of the project is to develop algorithms to extract accurate -- yet computationally-inexpensive -- noise macromodels of large blocks of digital aggressors. The resulting noisemacromodels will be used to develop a methodology for fast prediction of on-chip interference noise via both power-grid and substrate-coupling mechanisms. Unlike prior attempts, the project unified the prediction of interference noise digital design (e.g., switching noise margin, power/ground bounce induced delay variations) and for mixed-signal/analog/RF design (e.g., interference-induced spurs, SNR degradation and PLL jitter). Because the approach is algorithmically-based and not tied to any particular technology or design style, it is also easily adapted to apply nanoscale devices and mixed-domain systems containing electronics, optics, and MEMS. Thus, the project is expected to have significant broad impact in the general arena of high-performance hardware for communication, computational and sensor systems. The algorithms developed will be disseminated as open-source code, further accelerating and enhancing the project's impact in the technological community.
明尼苏达州的Jaijeet RoychowdhuryU-Twin City用于自动、分层、自下而上地提取用于电源和衬底噪声分析的大型数字传输块的CAD算法今天,我们技术社会的几乎每个方面都依赖于各种数字和混合信号集成电路(IC),这些集成电路每天都在变得越来越大和越来越复杂。为了继续有效地设计这样的芯片,估计由大量开关数字块产生的干扰噪声变得极其重要。新技术中不断增加的电流消耗、更高的开关速度(时钟频率)和不断下降的电源电压共同加剧了干扰噪声的水平,并加剧了其对系统功能和性能的破坏性影响。没有正确估计和控制的干扰噪声会导致生产运行失败、设计周转延迟、开发成本增加和上市时间延长。在这个项目中,将开发用于预测数字干扰噪声的算法、方法和原型CAD工具。该项目的核心是开发算法,以提取准确的、但计算成本低的大块数字攻击者的噪声宏模型。由此产生的噪声宏模型将被用来开发一种通过电网和基板耦合机制来快速预测芯片上干扰噪声的方法。与以前的尝试不同,该项目统一了对干扰噪声数字设计(例如,开关噪声裕度、电源/地反弹引起的延迟变化)和混合信号/模拟/射频设计(例如,干扰引起的杂散、SNR降级和PLL抖动)的预测。由于这种方法是基于算法的,不受任何特定技术或设计风格的约束,因此也很容易应用于纳米级设备和包含电子、光学和MEMS的混合域系统。因此,该项目预计将在通信、计算和传感器系统的高性能硬件领域产生重大而广泛的影响。开发的算法将作为开放源码传播,进一步加速和加强该项目在技术界的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jaijeet Roychowdhury其他文献

Jaijeet Roychowdhury的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jaijeet Roychowdhury', 18)}}的其他基金

FET: Medium: Latch Ising Machines (LIM)
FET:介质:锁存机 (LIM)
  • 批准号:
    2106944
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
FET: Medium: ROCS: Recurrent Oscillatory Computing Systems for Rapid Solution of NP-Complete and Deep Learning Problems
FET:中:ROCS:用于快速解决 NP 完全问题和深度学习问题的循环振荡计算系统
  • 批准号:
    1901004
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
SHF: Medium: Booleanized Verification of Analog/Mixed Signal Systems
SHF:中:模拟/混合信号系统的布尔化验证
  • 批准号:
    1563812
  • 财政年份:
    2016
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
SHF: Large: Phase-Based Logic Realized Using Oscillatory Nanosystems (PHLOGON)
SHF:大型:使用振荡纳米系统实现的基于相位的逻辑 (PHLOGON)
  • 批准号:
    1111733
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Generalized artificial-time PDE formulations and computational techniques for multi-rate systems
多速率系统的广义人工时间 PDE 公式和计算技术
  • 批准号:
    0515227
  • 财政年份:
    2006
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
ITR: CAD Algorithms for Unified Prediction of Oscillator Mixing and Phase Noise
ITR:统一预测振荡器混频和相位噪声的 CAD 算法
  • 批准号:
    0312079
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
CAD Algorithms for Automated Nonlinear Macromodelling
用于自动非线性宏观建模的 CAD 算法
  • 批准号:
    0204278
  • 财政年份:
    2002
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似海外基金

Automated People Management: When algorithms manage employees
自动化人员管理:当算法管理员工时
  • 批准号:
    DE230100950
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Early Career Researcher Award
Machine learning algorithms for automated decision making under domain shift
领域转移下自动决策的机器学习算法
  • 批准号:
    2736505
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Algorithms and Tools for Big Data Analysis and Automated Real Time Optimal or Near Optimal Decision Making for Industrial Systems
用于工业系统大数据分析和自动实时最佳或接近最佳决策的算法和工具
  • 批准号:
    RGPIN-2017-05785
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Discovery Grants Program - Individual
Exploring Efficient Automated Design Choices for Robust Machine Learning Algorithms
探索稳健的机器学习算法的高效自动化设计选择
  • 批准号:
    2748823
  • 财政年份:
    2022
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
CAREER: Automated Analysis and Design of Optimization Algorithms
职业:优化算法的自动分析和设计
  • 批准号:
    2136945
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
  • 批准号:
    10951308
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
  • 批准号:
    10594534
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
Deep learning tools for the automated analysis of hematopathology whole slide images and the development of prognostic algorithms for hematopoietic stem cell transplant recipients
用于自动分析血液病理学全幻灯片图像和开发造血干细胞移植受者预后算法的深度学习工具
  • 批准号:
    10286424
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
  • 批准号:
    10379385
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
Automated Assessment for Robotic Suturing Utilizing Deep Learning Algorithms
利用深度学习算法自动评估机器人缝合
  • 批准号:
    10208178
  • 财政年份:
    2021
  • 资助金额:
    $ 20万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了