SHF: Medium: Energy Efficient Computing on GPU-based Heterogeneous Systems

SHF:中:基于 GPU 的异构系统的节能计算

基本信息

  • 批准号:
    1513201
  • 负责人:
  • 金额:
    $ 75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2020-05-31
  • 项目状态:
    已结题

项目摘要

The current trend in designing future multiprocessors is to integrate hundreds of cores and hardware accelerators (HAs), such as GPUs, on a single platform. However, as the system size scales, the power and energy consumption of these heterogeneous multiprocessors vastly exceed the budget. The primary focus of the project is to develop energy efficient techniques that can be implemented in the GPU with proper coordination with the CPUs. Energy reduction in GPU-based heterogeneous multiprocessors can be achieved by extending current CPU techniques to GPU. The project develops new runtime techniques for GPU core scaling and Dynamic Voltage and Frequency scaling (DVFS), and combines them with basic changes in algorithms and data structures to improve energy efficiency. Existing models for performance and energy consumption assume 100% utilization of the processing cores and perfect overlap with memory access during execution. This project develops a more accurate model for energy efficiency taking into account the algorithm, data structure, caching and memory coalescing for different applications. A runtime system is being developed that monitors the GPU core and memory utilizations together with the energy consumption while executing an application. The runtime adjusts the number of cores and/or frequency level dynamically through prediction, but continues to make corrections as the execution proceeds. The runtime is extended to heterogeneous systems consisting of both CPU and GPU.The current DVFS techniques for scientific computing applications cannot fully eliminate slacks, therefore, are not energy optimal. By leveraging the algorithmic characteristics, a frequency scheduling technique is developed for linear algebra applications to achieve better energy efficiency.The project optimizes the energy efficiency while partitioning and designing tasks of an application. Without loss of generality, Cholesky factorization is used as an example and an energy efficient scheduler is developed. The project develops software products that can be readily applied to existing large scale heterogeneous computers executing scientific applications that are suitable for defense, energy and critical infrastructure projects. Also applications like weather forecasting and structural dynamics are developed that have a great impact on society. The research content is integrated to graduate courses to provide training to students for designing and programming heterogeneous systems. The project aims to produce very high quality Ph.D. graduates including female students. The University of California, Riverside is known for its large proportion of Hispanic students, and UCR is a minority-serving institution. The project supports recruiting underrepresented minority and female students.
当前设计未来多处理器的趋势是在单个平台上集成数百个内核和硬件加速器 (HA)(例如 GPU)。然而,随着系统规模的扩大,这些异构多处理器的功耗和能耗大大超出了预算。该项目的主要重点是开发节能技术,这些技术可以在与 CPU 适当协调的情况下在 GPU 中实现。基于 GPU 的异构多处理器的能耗可以通过将当前的 CPU 技术扩展到 GPU 来实现。 该项目开发了用于 GPU 核心扩展和动态电压和频率扩展 (DVFS) 的新运行时技术,并将它们与算法和数据结构的基本变化相结合,以提高能源效率。现有的性能和能耗模型假设处理核心的利用率为 100%,并且在执行期间与内存访问完美重叠。该项目开发了一个更准确的能源效率模型,考虑到不同应用的算法、数据结构、缓存和内存合并。正在开发一个运行时系统,用于监视 GPU 核心和内存利用率以及执行应用程序时的能耗。运行时通过预测动态调整核心数量和/或频率级别,但随着执行的进行继续进行更正。运行时间扩展到由CPU和GPU组成的异构系统。当前用于科学计算应用的DVFS技术不能完全消除松弛,因此不是能量最优的。利用算法特性,为线性代数应用开发了频率调度技术,以实现更好的能源效率。该项目在划分和设计应用程序任务的同时优化能源效率。不失一般性,以 Cholesky 分解为例,开发了一种节能调度器。该项目开发的软件产品可以轻松应用于现有的大规模异构计算机,执行适用于国防、能源和关键基础设施项目的科学应用程序。天气预报和结构动力学等应用程序的开发也对社会产生了巨大影响。研究内容被整合到研究生课程中,为学生提供设计和编程异构系统的培训。该项目旨在培养非常高质量的博士学位。毕业生,包括女学生。加州大学河滨分校以其大量西班牙裔学生而闻名,而加州大学河滨分校是一所为少数族裔服务的机构。该项目支持招收代表性不足的少数族裔和女学生。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laxmi Bhuyan其他文献

Assertion Based Verification and Analysis of Network Processor Architectures
  • DOI:
    10.1007/s10617-005-1193-5
  • 发表时间:
    2005-07-11
  • 期刊:
  • 影响因子:
    0.900
  • 作者:
    Xi Chen;Yan Luo;Harry Hsieh;Laxmi Bhuyan;Felice Balarin
  • 通讯作者:
    Felice Balarin

Laxmi Bhuyan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laxmi Bhuyan', 18)}}的其他基金

Travel: Student Travel Support to NAS 2021
旅行:2021 年 NAS 学生旅行支持
  • 批准号:
    2139217
  • 财政年份:
    2021
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SHF: Small: Locality Aware Scheduling in Multi-GPU Systems
SHF:小型:多 GPU 系统中的局部感知调度
  • 批准号:
    1907401
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SHF: Small: Efficient CPU-GPU Communication for Heterogeneous Architectures
SHF:小型:异构架构的高效 CPU-GPU 通信
  • 批准号:
    1423108
  • 财政年份:
    2014
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
EAGER: Developing a Programming Environment for Heterogenous Multiprocessors
EAGER:为异构多处理器开发编程环境
  • 批准号:
    1157377
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CSR: Small: Power-Efficient Multicore Scheduling for Network Applications
CSR:小型:网络应用的高能效多核调度
  • 批准号:
    1216014
  • 财政年份:
    2012
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
SHF: Medium: Hardware/Software Partitioning for Hybrid Shared Memory Multiprocessors
SHF:中:混合共享内存多处理器的硬件/软件分区
  • 批准号:
    0905509
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CSR: Small: Core Scheduling to Improve Virtualized I/O Performance on Multi-Core Systems
CSR:小型:通过核心调度提高多核系统上的虚拟化 I/O 性能
  • 批准号:
    0912850
  • 财政年份:
    2009
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
CPA-CSA: Virtualization-Aware Architectures to Accelerate Network I/O Processing
CPA-CSA:加速网络 I/O 处理的虚拟化感知架构
  • 批准号:
    0811834
  • 财政年份:
    2008
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
NEDG: Application Oriented Edge Routers
NEDG:面向应用的边缘路由器
  • 批准号:
    0832108
  • 财政年份:
    2008
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
MRI: Acquisition of an Ultra Low-Latency Multiprocessor System with On-Board Hardware Accelerators
MRI:获取具有板载硬件加速器的超低延迟多处理器系统
  • 批准号:
    0619223
  • 财政年份:
    2006
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant

相似海外基金

SHF: Medium: Provably Correct, Energy-Efficient Edge Computing
SHF:中:可证明正确、节能的边缘计算
  • 批准号:
    2403144
  • 财政年份:
    2024
  • 资助金额:
    $ 75万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311543
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: EPIC: Exploiting Photonic Interconnects for Resilient Data Communication and Acceleration in Energy-Efficient Chiplet-based Architectures
合作研究:SHF:中:EPIC:利用光子互连实现基于节能 Chiplet 的架构中的弹性数据通信和加速
  • 批准号:
    2311544
  • 财政年份:
    2023
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
  • 批准号:
    2212346
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Medium: Automated energy-efficient sensor data winnowing using native analog processing
协作研究:SHF:中:使用本机模拟处理进行自动节能传感器数据筛选
  • 批准号:
    2212345
  • 财政年份:
    2022
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerators for Energy-efficient Heterogeneous Multicore Architectures
SHF:媒介:协作研究:用于节能异构多核架构的光子神经网络加速器
  • 批准号:
    1901165
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Photonic Neural Network Accelerator for Energy-efficient Heterogeneous Multicore Architectures
SHF:中:协作研究:用于节能异构多核架构的光子神经网络加速器
  • 批准号:
    1901192
  • 财政年份:
    2019
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures Optimized for Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,针对能源、性能和可靠性进行了优化
  • 批准号:
    1702980
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures for Optimized Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,可优化能源、性能和可靠性
  • 批准号:
    1702496
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
SHF: Medium: Collaborative Research: Machine Learning Enabled Network-on-Chip Architectures for Optimized Energy, Performance and Reliability
SHF:中:协作研究:支持机器学习的片上网络架构,可优化能源、性能和可靠性
  • 批准号:
    1703013
  • 财政年份:
    2017
  • 资助金额:
    $ 75万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了