SHF: Small: Bitstream Processing
SHF:小型:比特流处理
基本信息
- 批准号:1813434
- 负责人:
- 金额:$ 45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-10-01 至 2022-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Embedded computing systems are becoming very common in today's world, ranging from wearable devices, to in-home smart speakers, to autonomous appliances and vehicles. Many of the computational tasks that these systems implement require very high performance hardware for tasks like audio voice recognition, visual object recognition, path optimization, and autonomous control. Historically, such high-performance hardware relied on binary fixed-point algorithms deployed on low-power microcontrollers or digital signal processors. However, the sensing and control interfaces themselves do not use binary number representations, but instead use bitstreams, which encode numeric input and output values using the density of ones over time. Conventional computing substrates requires conversion of both inputs and outputs to interface with physical systems that utilize bitstreams. This project is developing novel, biologically-inspired approaches for directly operating on data represented in the native bitstream format. Compute hardware that directly operates on these bitstreams can be seamlessly integrated into systems that sense the real world, process sensory data, and issue control commands based on the processed data as well as learned actions based on rewards from the environment. The capability of these new approaches will be demonstrated through two experimental platforms: a very low power speech recognition system that operates on bitstream audio data, and an autonomous airborne vehicle that learns to navigate its environment. This research has broad industry- and economy-wide impact since it will lead to the discovery and realization of novel, powerful, and energy-efficient approaches for implementing power- and energy-constrained embedded computing systems.This research advocates development of novel, biologically-inspired approaches for processing data represented as bitstreams. Bitstreams, which encode numeric values using density of ones (unary) or ones and zeroes (binary) are a natural representation for data sensed from the environment (input) as well as robotic control (output), and can be inexpensively generated using low-cost, yet accurate, sigma-delta modulators. The initial phase of this research project focuses on developing the theoretical and algorithmic underpinnings for visual, auditory, and inertial sensory processing, including feature extraction, bandpass filtering, perspective and coordinate transforms, linear optimization, and memory formation, which are grounded in principles from the speech processing, computer vision, spiking neural networks, reinforcement learning, and signal processing domains. The novel sensory processing capabilities are then deployed in two experimental platforms: first, an ultra-low power acoustic model for speech recognition that can demonstrate the suitability of bitstream processing for feature extraction and sequence learning via long short-term memory. Next, bitstream sensory processing technology is coupled directly to a control system that enables an unmanned aerial vehicle to navigate in a controlled indoor environment while learning, with increasing efficiency, to identify and target sources of rewards. Both demonstration platforms rely on concepts from biological spiking neural networks, stochastic computing for arithmetic operations, as well as oversampled sigma-delta modulation theory for data representation and signal processing tasks, and provide unprecedented levels of efficiency in terms of energy consumption, compute density, and autonomous operation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
嵌入式计算系统在当今世界变得非常普遍,范围从可穿戴设备到家用智能扬声器,再到自主电器和车辆。这些系统实现的许多计算任务需要非常高性能的硬件来完成音频语音识别、视觉对象识别、路径优化和自主控制等任务。 从历史上看,这种高性能硬件依赖于部署在低功耗微控制器或数字信号处理器上的二进制定点算法。然而,感测和控制接口本身不使用二进制数表示,而是使用比特流,比特流使用1随时间的密度对数字输入和输出值进行编码。传统的计算基板需要输入和输出两者的转换以与利用比特流的物理系统接口。 该项目正在开发新颖的,生物启发的方法,用于直接操作以本地比特流格式表示的数据。直接在这些比特流上操作的计算硬件可以无缝地集成到系统中,该系统感测真实的世界、处理感测数据、并基于经处理的数据以及基于来自环境的奖励的学习动作来发出控制命令。这些新方法的能力将通过两个实验平台来证明:一个是基于比特流音频数据的非常低功耗的语音识别系统,另一个是学习导航环境的自主飞行器。这项研究具有广泛的行业和经济范围的影响,因为它将导致发现和实现新颖的,强大的,节能的方法来实现功率和能源受限的嵌入式计算systems.This研究提倡开发新颖的,生物启发的方法来处理数据表示为bitstream。使用1(一元)或1和0(二进制)的密度对数值进行编码的比特流是从环境(输入)以及机器人控制(输出)感测到的数据的自然表示,并且可以使用低成本但准确的Σ-Δ调制器廉价地生成。该研究项目的初始阶段侧重于开发视觉,听觉和惯性感觉处理的理论和算法基础,包括特征提取,带通滤波,透视和坐标变换,线性优化和记忆形成,这些都是基于语音处理,计算机视觉,尖峰神经网络,强化学习和信号处理领域的原则。新的感官处理能力,然后部署在两个实验平台:第一,超低功耗的语音识别声学模型,可以证明比特流处理的特征提取和序列学习通过长短期记忆的适用性。接下来,比特流感觉处理技术直接耦合到控制系统,该控制系统使得无人驾驶飞行器能够在受控室内环境中导航,同时以增加的效率学习识别和瞄准奖励源。这两个演示平台都依赖于生物尖峰神经网络的概念,算术运算的随机计算,以及用于数据表示和信号处理任务的过采样Σ-Δ调制理论,并在能耗,计算密度,该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的评估被认为值得支持。影响审查标准。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
BitSAD: A Domain-Specific Language for Bitstream Computing
BitSAD:用于比特流计算的领域特定语言
- DOI:
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kyle Daruwalla, Heng Zhuo
- 通讯作者:Kyle Daruwalla, Heng Zhuo
Modeling Architectural Support for Tightly-Coupled Accelerators
紧耦合加速器的建模架构支持
- DOI:10.1109/ispass48437.2020.00045
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Schlais, David J.;Zhuo, Heng;Lipasti, Mikko H.
- 通讯作者:Lipasti, Mikko H.
Value Locality Based Approximation With ODIN
使用 ODIN 进行基于值局部性的近似
- DOI:10.1109/lca.2020.3002542
- 发表时间:2020
- 期刊:
- 影响因子:2.3
- 作者:Singh, Rahul;Ravi, Gokul Subramanian;Lipasti, Mikko;Miguel, Joshua San
- 通讯作者:Miguel, Joshua San
BlurNet: Defense by Filtering the Feature Maps
- DOI:10.1109/dsn-w50199.2020.00016
- 发表时间:2019-08
- 期刊:
- 影响因子:0
- 作者:Ravi Raju;Mikko H. Lipasti
- 通讯作者:Ravi Raju;Mikko H. Lipasti
BitBench: a benchmark for bitstream computing
- DOI:10.1145/3316482.3326355
- 发表时间:2019-06
- 期刊:
- 影响因子:0
- 作者:Kyle Daruwalla;Heng Zhuo;C. Schulz;Mikko H. Lipasti
- 通讯作者:Kyle Daruwalla;Heng Zhuo;C. Schulz;Mikko H. Lipasti
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mikko Lipasti其他文献
Mikko Lipasti的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mikko Lipasti', 18)}}的其他基金
FoMR: IPC-MASTA: Boosting IPC with Microarchitectural Support for Tightly-Coupled Accelerators
FoMR:IPC-MASTA:通过紧耦合加速器的微架构支持增强 IPC
- 批准号:
2010830 - 财政年份:2020
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I-Corps: Customizable and scalable high-performance microprocessor
I-Corps:可定制和可扩展的高性能微处理器
- 批准号:
1720263 - 财政年份:2017
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
XPS: FULL: Emerging Nonvolatile Memory for Analog-iterative Numerical Methods
XPS:FULL:用于模拟迭代数值方法的新兴非易失性存储器
- 批准号:
1628384 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: SlackTrack: Efficiently Exploiting Circuit Slack in Multi-Cycle Datapaths
SHF:小型:SlackTrack:有效利用多周期数据路径中的电路空闲
- 批准号:
1615014 - 财政年份:2016
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Reliable In-place Execution for Multicore Processors
SHF:小型:多核处理器的可靠就地执行
- 批准号:
1318298 - 财政年份:2013
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
I-Corps: Accurate and energy-efficient sensory stream analysis via configurable trigger signature detection
I-Corps:通过可配置的触发签名检测进行准确且节能的感官流分析
- 批准号:
1262117 - 财政年份:2012
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
SHF: Small: Arbitration, Coherence, and Consistency for Nanophotonic Multicore Processors
SHF:小型:纳米光子多核处理器的仲裁、连贯性和一致性
- 批准号:
1116450 - 财政年份:2011
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Lazy Logic: Minimizing Activity to Reduce Processor Power Consumption
惰性逻辑:最大限度地减少活动以降低处理器功耗
- 批准号:
0702272 - 财政年份:2007
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Coherence: Streamlining Shared Memory Performance
协作一致性:简化共享内存性能
- 批准号:
0429854 - 财政年份:2004
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
CAREER: Semantic Decomposition of Instruction Sets
职业:指令集的语义分解
- 批准号:
0133437 - 财政年份:2002
- 资助金额:
$ 45万 - 项目类别:
Continuing Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
CSR: Small: Leveraging Physical Side-Channels for Good
CSR:小:利用物理侧通道做好事
- 批准号:
2312089 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NeTS: Small: NSF-DST: Modernizing Underground Mining Operations with Millimeter-Wave Imaging and Networking
NeTS:小型:NSF-DST:利用毫米波成像和网络实现地下采矿作业现代化
- 批准号:
2342833 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
CPS: Small: NSF-DST: Autonomous Operations of Multi-UAV Uncrewed Aerial Systems using Onboard Sensing to Monitor and Track Natural Disaster Events
CPS:小型:NSF-DST:使用机载传感监测和跟踪自然灾害事件的多无人机无人航空系统自主操作
- 批准号:
2343062 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
オミックス解析を用いたブドウ球菌 small colony variants の包括的特徴づけ
使用组学分析全面表征葡萄球菌小菌落变体
- 批准号:
24K13443 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
AF: Small: Problems in Algorithmic Game Theory for Online Markets
AF:小:在线市场的算法博弈论问题
- 批准号:
2332922 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
NeTS: Small: ML-Driven Online Traffic Analysis at Multi-Terabit Line Rates
NeTS:小型:ML 驱动的多太比特线路速率在线流量分析
- 批准号:
2331111 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331302 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 45万 - 项目类别:
Standard Grant