EAGER: Understanding Carrier Multiplication in Black Phosphorus for High-Gain MWIR Avalanche Photodiodes

EAGER:了解高增益中波红外雪崩光电二极管的黑磷中的载流子倍增

基本信息

  • 批准号:
    1648782
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-09-15 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

Black phosphorus is an emerging "two-dimensional" semiconductor material with many extraordinary optical and electronic properties. In particular, black phosphorus has strong optical absorption in the mid-infrared wavelength range, has high electrical current carrying capacity, and can be transferred onto a variety of substrates in layers only a few nanometers thick. For these reasons, black phosphorus could be a revolutionary platform for adaptable infrared imagers and optical communications systems. However, in order to achieve this promise, the process by which charge carriers multiply to create gain must be understood. This project seeks to understand one such gain mechanism, avalanche multiplication through impact ionization, which to date, as not been studied in black phosphorus. This basic physical mechanism will be studied by fabricating nanoscale device structures which will be tested using steady-state and time-dependent electrical measurements as well as optical techniques. These studies can provide fundamental understanding of impact ionization that will be important to realize new types of infrared imaging systems with higher sensitivity and tunability, as well as lower cost, compared to state-of-the-art solutions. The learning from this project will also be broadly applicable to a wide range of other devices using black phosphorus, including light emitters, logic and memory devices and even sensors. In this way, this work could help to realize a transformative technological platform for high-performance, low-cost flexible imagers and electronics. The program will also incorporate training for graduate and undergraduate students in nanoelectronics, and provides natural opportunities for hands-on activities for students at the primary and secondary educational level to illustrate nanoscience concepts.The technical goals of this research program are to evaluate and understand the process of impact ionization in black phosphorus and to analyze the avalanche gain mechanism in photodiodes made using this material. These goals will be met by using high-precision electron-beam lithography to fabricate metal-semiconductor-metal device structures on exfoliated black phosphorus and then performing high-field transport measurements to extract the ionization coefficients for both electrons and holes. Avalanche gain in black phosphorus will also be characterized by illuminating the devices with near-band-edge light and using spatially-mapped photocurrent characterization. This work is intellectually significant in that it is expected to provide extensive fundamental insight into high-electric-field transport in black phosphorus. In particular, it will allow for an understanding of impact ionization, a fundamental process that is critical for the operation of nearly any practical device made from this material, including photodetectors, but also logic, memory and sensing transistors. Furthermore, this project will help to determine the means by which excess noise created from the combined avalanching of electrons and holes can be suppressed in black phosphorus in an analogous way to literature reports on germanium. This learning could ultimately lead to ground-breaking, low-cost, multi-spectral communication and imaging systems with improved speed and sensitivity compared to current solutions.
黑磷是一种新兴的“二维”半导体材料,具有许多非凡的光学和电子特性。特别是,黑磷在中红外波长范围内具有很强的光吸收,具有很高的电流承载能力,并且可以以仅几纳米厚的层转移到各种衬底上。由于这些原因,黑磷可能成为适应性强的红外成像仪和光通信系统的革命性平台。然而,为了实现这一承诺,必须了解电荷载流子倍增以产生增益的过程。该项目旨在了解这样一种增益机制,即通过碰撞电离的雪崩倍增,迄今为止,还没有在黑磷中研究过。这一基本的物理机制将通过制造纳米级器件结构来研究,这些器件结构将使用稳态和随时间变化的电学测量以及光学技术进行测试。这些研究可以提供对碰撞电离的基本理解,这对于实现与最先进的解决方案相比具有更高灵敏度和可调谐性以及更低成本的新型红外成像系统至关重要。从这个项目中学到的知识也将广泛适用于使用黑磷的各种其他设备,包括光发射器,逻辑和存储设备,甚至传感器。通过这种方式,这项工作可以帮助实现高性能,低成本的灵活成像器和电子产品的变革性技术平台。该项目还将为研究生和本科生提供纳米电子学方面的培训,并为小学和中学教育水平的学生提供实践活动的自然机会,以说明纳米科学概念。该研究项目的技术目标是评估和理解黑磷的碰撞电离过程,并分析使用这种材料制成的光电二极管的雪崩增益机制。这些目标将通过使用高精度电子束光刻在剥落的黑磷上制造金属-半导体-金属器件结构,然后进行高场传输测量以提取电子和空穴的电离系数来实现。雪崩增益黑磷也将其特征在于照明的设备与近带边光,并使用空间映射的光电流特性。这项工作是智力上的意义,因为它预计将提供广泛的高电场运输黑磷的基本见解。特别是,它将允许理解碰撞电离,这是一个基本过程,对于由这种材料制成的几乎任何实用设备的操作都至关重要,包括光电探测器,但也包括逻辑,存储器和传感晶体管。此外,该项目将有助于确定如何以类似于有关锗的文献报告的方式抑制黑磷中电子和空穴组合雪崩产生的过量噪声。这种学习最终可能导致突破性的,低成本的,多光谱通信和成像系统,与当前的解决方案相比,具有更高的速度和灵敏度。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Black phosphorus avalanche photodetector
黑磷雪崩光电探测器
  • DOI:
    10.1109/drc.2017.7999500
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Atalla, Mahmoud R.;Koester, Steven J.
  • 通讯作者:
    Koester, Steven J.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Koester其他文献

Super-Resolution by Combination of a Solid Immersion Lens and an Aperture
固体浸没透镜和光圈组合的超分辨率
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Milster;F. Akhavan;M. Bailey;J. K. Erwin;David Felix;K. Hirota;Steven Koester;K. Shimura;Yan Zhang
  • 通讯作者:
    Yan Zhang
Tamoxifen stimulates in vivo growth of drug-resistant estrogen receptor-negative breast cancer
  • DOI:
    10.1007/bf00735926
  • 发表时间:
    1993-09-01
  • 期刊:
  • 影响因子:
    2.300
  • 作者:
    Juhani Maenpaa;Valerie Wiebe;Steven Koester;Gregory Wurz;Vernon Emshoff;Robert Seymour;Pirkko Sipila;Michael DeGregorio
  • 通讯作者:
    Michael DeGregorio

Steven Koester的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Koester', 18)}}的其他基金

Conference: Workshop on Quantum Engineering Infrastructure II
会议:量子工程基础设施研讨会II
  • 批准号:
    2405015
  • 财政年份:
    2024
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: GeSnO2 Alloys for Next-Generation Semiconductor Devices
合作研究:FuSe:用于下一代半导体器件的 GeSnO2 合金
  • 批准号:
    2328702
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant
Workshop on Quantum Engineering Infrastructure. To Be Held Virtual In April 2021.
量子工程基础设施研讨会。
  • 批准号:
    2124834
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
RET Site: Collaborative Research: Research Experiences for Teachers across the National Nanotechnology Coordinated Infrastructure
RET 网站:合作研究:国家纳米技术协调基础设施中教师的研究经验
  • 批准号:
    1953396
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
NNCI: Midwest Nano Infrastructure Corridor (MINIC)
NNCI:中西部纳米基础设施走廊 (MINIC)
  • 批准号:
    2025124
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Cooperative Agreement
Collaborative Research: AccelNet: Global Quantum Leap
合作研究:AccelNet:全球量子飞跃
  • 批准号:
    2020174
  • 财政年份:
    2020
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
GOALI: Transparent Beam Steering Antennas Enabled by Graphene Quantum Capacitance Varactors
GOALI:由石墨烯量子电容变容二极管实现的透明波束控制天线
  • 批准号:
    1708275
  • 财政年份:
    2017
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Negative Capacitance Phosphorene Tunneling Field Effect Transistors
负电容磷烯隧道场效应晶体管
  • 批准号:
    1708769
  • 财政年份:
    2017
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
NNCI: Midwest Nano Infrastructure Corrider (MINIC)
NNCI:中西部纳米基础设施走廊 (MINIC)
  • 批准号:
    1542202
  • 财政年份:
    2015
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Cooperative Agreement
GOALI: Nanowire Broken-Gap Tunneling Field-Effect Transistors for High-Performance, Ultra-Low-Power Logic Applications
GOALI:用于高性能、超低功耗逻辑应用的纳米线断隙隧道场效应晶体管
  • 批准号:
    1102278
  • 财政年份:
    2011
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant

相似国自然基金

Understanding structural evolution of galaxies with machine learning
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Understanding complicated gravitational physics by simple two-shell systems
  • 批准号:
    12005059
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Understanding Carrier Delocalization and Transport in Micelle Forming Amphiphilic Conjugated Polymers
了解形成胶束的两亲性共轭聚合物中的载流子离域和传输
  • 批准号:
    2305152
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Understanding carrier transport properties of ultra-thin semiconductor channel CMOS and establishing a method to enhance channel mobility
了解超薄半导体沟道CMOS的载流子传输特性并建立增强沟道迁移率的方法
  • 批准号:
    22H00208
  • 财政年份:
    2022
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of albumin DDS carrier based on an understanding of the endogenous albumin transport system
基于对内源性白蛋白转运系统的了解开发白蛋白DDS载体
  • 批准号:
    21H02645
  • 财政年份:
    2021
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conjugated Energy Transport and Hot Carrier Diffusion in 2D Transition Metal Dichalcogenides: Novel Characterization toward Fundamental Understanding
二维过渡金属二硫属化物中的共轭能量传输和热载流子扩散:通向基本理解的新表征
  • 批准号:
    1930866
  • 财政年份:
    2019
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Plasmon chemistry based on a proper understanding of hot carrier generation mechanism
基于对热载流子产生机制的正确理解的等离子体化学
  • 批准号:
    18K05042
  • 财政年份:
    2018
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Beyond the Shockley-Queisser Limit: Understanding and Controlling Carrier Multiplication in Carbon Nanotube PN Junctions
超越 Shockley-Queisser 极限:理解和控制碳纳米管 PN 结中的载流子倍增
  • 批准号:
    1709800
  • 财政年份:
    2017
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Understanding of carrier transport properties of Ge-On-Insulator CMOS and establishment of performance enhancement engineering
了解Ge-On-Insulator CMOS的载流子传输特性并建立性能增强工程
  • 批准号:
    26249038
  • 财政年份:
    2014
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Towards a Fundamental Understanding of Hot-Carrier Transport across Materials Interfaces
对跨材料界面的热载流子传输有一个基本的了解
  • 批准号:
    1308102
  • 财政年份:
    2013
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Understanding of carrier transport mechanism in Ge MOS interfaces and establishment of mobility enhancement technologies
Ge MOS界面载流子传输机制的理解及迁移率增强技术的建立
  • 批准号:
    23246058
  • 财政年份:
    2011
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Understanding the Structural Dynamics of Polarons in Transition Metal Oxide Semiconductors by Vibrational Spectroscopy and Charge-Carrier Mobilities
通过振动光谱和载流子迁移率了解过渡金属氧化物半导体中极化子的结构动力学
  • 批准号:
    519139248
  • 财政年份:
  • 资助金额:
    $ 12.5万
  • 项目类别:
    WBP Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了