Vapor-Phase Epitaxy of Single-Domain Halide Perovskites for Quantum Applications
用于量子应用的单域卤化物钙钛矿的气相外延
基本信息
- 批准号:1807573
- 负责人:
- 金额:$ 47.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-07-15 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-Technical Summary:Thin film halide perovskite semiconductors have emerged as game-changing materials for many electronic applications and for solar energy conversion. Perovskite semiconductors are composed of earth-abundant elements, and are capable of achieving high performance comparable to traditional semiconductors such as Si and GaAs. However, there is still very little understanding how to grow thin film single crystals that could help lead to the highest potential for this class of material. This project, funded by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, expands the knowledge of accessible single-crystal growth dynamics for halide perovskites. The researchers study precisely controlled thin-film deposition of inorganic and hybrid halide perovskites. This fundamental research enables the realization of next generation thin-film perovskite quantum applications, designer multilayers, high speed transistors, and guides the development of stable and low-cost halide perovskite solar cells. To complement the technical project, a coordinated outreach and educational effort expands "Sustainable- and Solar-Energy Tinker-Space" workshops to include new modules on "The Magic of Diffraction" for hands-on energy education on the Michigan State University campus. Additionally, the researchers develop an annual art competition to raise awareness of innovative Materials Science research. This research ultimately brings the U.S. closer to the widespread application of the highest performance halide perovskite electronics and quantum devices. Technical Summary:This project, funded by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, furthers the understanding of the bottom-up synthesis of halide perovskite epitaxial films and superlattices with controlled order and properties. Compared to their oxide analogues, the study of emergent phenomenon occurring at the interface for halide perovskite system has been underexplored and underexploited. Control over crystalline order, orientation, strain, and quantum confinement are therefore fundamental to the optimization of energy migration in these halide perovskite materials for the next generation high performance photovoltaics, optoelectronics and quantum degenerate two-dimensional electron systems. Employing vapor growth, the researchers explore and uncover heteroepitaxial growth modes of perovskite films that also enable the fabrication of quantum confined multilayers using real-time and in-situ diffraction techniques optimized for growth on both insulating and semiconducting substrates. Routes to tailoring the crystalline phase, stoichiometry, strain, and doping profiles of epitaxial films and quantum wells are established to realize electronic many-body phases in high-quality two-dimensional electron systems and determine the connection between structure and quantum properties that can guide future device development. To complement the technical project, a coordinated outreach and educational effort expands "Sustainable- and Solar-Energy Tinker-Space" workshops to include new modules on "The Magic of Diffraction" for hands-on energy education on the Michigan State University campus. Additionally, the researchers develop an annual art competition to raise awareness of innovative Materials Science research. This research ultimately brings the U.S. closer to the widespread application of the highest performance halide perovskite electronics and quantum devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要:薄膜卤化物钙钛矿半导体已成为许多电子应用和太阳能转换的改变游戏规则的材料。Peroxide半导体由地球上丰富的元素组成,能够实现与Si和GaAs等传统半导体相当的高性能。然而,人们仍然很少了解如何生长薄膜单晶,这可能有助于导致这类材料的最大潜力。该项目由NSF材料研究部的固态和材料化学计划资助,扩展了卤化物钙钛矿单晶生长动力学的知识。研究人员研究了无机和混合卤化物钙钛矿的精确控制薄膜沉积。这项基础研究使下一代薄膜钙钛矿量子应用,设计师多层膜,高速晶体管的实现成为可能,并指导稳定和低成本卤化物钙钛矿太阳能电池的开发。为了补充技术项目,协调的外联和教育工作扩大了“可持续能源和太阳能修补匠空间”讲习班,将“衍射的魔力”的新单元纳入密歇根州立大学校园的能源实践教育。此外,研究人员还举办了年度艺术竞赛,以提高人们对创新材料科学研究的认识。这项研究最终使美国更接近于最高性能卤化物钙钛矿电子和量子器件的广泛应用。 该项目由NSF材料研究部的固态和材料化学计划资助,进一步了解卤化物钙钛矿外延薄膜和超晶格的自下而上合成,具有受控的顺序和特性。与它们的氧化物类似物相比,卤化物钙钛矿体系界面处的涌现现象的研究还不够深入和充分。因此,对晶体有序、取向、应变和量子限制的控制是优化这些卤化物钙钛矿材料中的能量迁移的基础,用于下一代高性能光致发光、光电子和量子简并二维电子系统。采用气相生长,研究人员探索并揭示了钙钛矿薄膜的异质外延生长模式,这些模式还可以使用实时和原位衍射技术制造量子限制多层膜,这些技术针对绝缘和半导体衬底上的生长进行了优化。建立了调整外延膜和量子威尔斯的晶相、化学计量、应变和掺杂分布的路线,以在高质量的二维电子系统中实现电子多体相,并确定结构和量子特性之间的联系,从而指导未来的器件开发。为了补充技术项目,协调的外联和教育工作扩大了“可持续能源和太阳能修补匠空间”讲习班,将“衍射的魔力”的新单元纳入密歇根州立大学校园的能源实践教育。此外,研究人员还举办了年度艺术竞赛,以提高人们对创新材料科学研究的认识。这项研究最终使美国更接近最高性能卤化物钙钛矿电子和量子器件的广泛应用。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lead Halide Ultraviolet-Harvesting Transparent Photovoltaics with an Efficiency Exceeding 1%
- DOI:10.1021/acsaem.9b00270
- 发表时间:2019-06-01
- 期刊:
- 影响因子:6.4
- 作者:Liu, Dianyi;Yang, Chenchen;Lunt, Richard R.
- 通讯作者:Lunt, Richard R.
Epitaxial and quasiepitaxial growth of halide perovskites: New routes to high end optoelectronics
- DOI:10.1063/5.0017172
- 发表时间:2020-10
- 期刊:
- 影响因子:6.1
- 作者:Lili Wang;Isaac King;Pei Chen;Matthew Bates;R. Lunt
- 通讯作者:Lili Wang;Isaac King;Pei Chen;Matthew Bates;R. Lunt
Coherent Hopping Transport and Giant Negative Magnetoresistance in Epitaxial CsSnBr 3
外延 CsSnBr 3 中的相干跳跃传输和巨负磁阻
- DOI:10.1021/acsaelm.1c00409
- 发表时间:2021
- 期刊:
- 影响因子:4.7
- 作者:Zhang, Liangji;King, Isaac;Nasyedkin, Kostyantyn;Chen, Pei;Skinner, Brian;Lunt, Richard R.;Pollanen, Johannes
- 通讯作者:Pollanen, Johannes
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Lunt其他文献
Richard Lunt的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Lunt', 18)}}的其他基金
Invisible Luminescent Solar Concentrators
隐形发光太阳能聚光器
- 批准号:
1702591 - 财政年份:2017
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
CAREER: Optical and Nanostructural Control of Visibly-Transparent Small-Bandgap Excitonic Semiconductors for Integration in Highly-Efficient Transparent Photovoltaics
职业:可见光透明小带隙激子半导体的光学和纳米结构控制,用于高效透明光伏发电的集成
- 批准号:
1254662 - 财政年份:2013
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
相似国自然基金
Baryogenesis, Dark Matter and Nanohertz Gravitational Waves from a Dark
Supercooled Phase Transition
- 批准号:24ZR1429700
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
ATLAS实验探测器Phase 2升级
- 批准号:11961141014
- 批准年份:2019
- 资助金额:3350 万元
- 项目类别:国际(地区)合作与交流项目
地幔含水相Phase E的温度压力稳定区域与晶体结构研究
- 批准号:41802035
- 批准年份:2018
- 资助金额:12.0 万元
- 项目类别:青年科学基金项目
基于数字增强干涉的Phase-OTDR高灵敏度定量测量技术研究
- 批准号:61675216
- 批准年份:2016
- 资助金额:60.0 万元
- 项目类别:面上项目
基于Phase-type分布的多状态系统可靠性模型研究
- 批准号:71501183
- 批准年份:2015
- 资助金额:17.4 万元
- 项目类别:青年科学基金项目
纳米(I-Phase+α-Mg)准共晶的临界半固态形成条件及生长机制
- 批准号:51201142
- 批准年份:2012
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
连续Phase-Type分布数据拟合方法及其应用研究
- 批准号:11101428
- 批准年份:2011
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
D-Phase准晶体的电子行为各向异性的研究
- 批准号:19374069
- 批准年份:1993
- 资助金额:6.4 万元
- 项目类别:面上项目
相似海外基金
Creation of ultra-low defect gallium nitride crystals using a novel hybrid-type high-speed vapor phase epitaxy
使用新型混合型高速气相外延制造超低缺陷氮化镓晶体
- 批准号:
23K17743 - 财政年份:2023
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Novel broadband mid-infrared emitting quantum structures fabricated by metal organic vapor phase epitaxy
金属有机气相外延制备新型宽带中红外发射量子结构
- 批准号:
22K04245 - 财政年份:2022
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of thick GaN crystals with low-dislocation density by the vapor phase epitaxy with an oxide gallium source
氧化镓源气相外延低位错密度厚氮化镓晶体的研究
- 批准号:
20H02639 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
High-quality hetero-epitaxial AlN research by newly proposed high temperature metalorganic vapor phase epitaxy
通过新提出的高温有机金属气相外延进行高质量异质外延AlN研究
- 批准号:
20H02643 - 财政年份:2020
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Single-process fabrication of group-III nitride pseudo-substrates and devices via vapor phase epitaxy using solid chlorides
使用固体氯化物通过气相外延单工艺制造 III 族氮化物伪衬底和器件
- 批准号:
19H02614 - 财政年份:2019
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of vapor phase epitaxy growth conditions for high quality bulk GaN and their crystal growth process
高品质块体GaN气相外延生长条件及其晶体生长工艺研究
- 批准号:
18K04957 - 财政年份:2018
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Halide vapor phase epitaxy of epsilon-Ga2O3 for optical and power device applications
用于光学和功率器件应用的 epsilon-Ga2O3 卤化物气相外延
- 批准号:
17K05047 - 财政年份:2017
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
International Conference on Metalorganic Vapor Phase Epitaxy (ICMOVPE) XVIII, San Diego CA, July 10-15, 2016
第十八届金属有机气相外延国际会议 (ICMOVPE),加利福尼亚州圣地亚哥,2016 年 7 月 10-15 日
- 批准号:
1639797 - 财政年份:2016
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant
Halide Vapor Phase Epitaxy of high-quality ScN
高品质 ScN 的卤化物气相外延
- 批准号:
25790050 - 财政年份:2013
- 资助金额:
$ 47.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
MRI: Acquisition of Metal Organic Vapor Phase Epitaxy (MOVPE) Reactor for Nanostructured Materials Development
MRI:采购用于纳米结构材料开发的金属有机气相外延 (MOVPE) 反应器
- 批准号:
1337592 - 财政年份:2013
- 资助金额:
$ 47.5万 - 项目类别:
Standard Grant














{{item.name}}会员




