SHF: Small: Development of Differentiable Memory Augmented Neural CPU Architecture for Cognitive Computing
SHF:小型:用于认知计算的可微内存增强神经 CPU 架构的开发
基本信息
- 批准号:2008906
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The past half-decade has seen unprecedented growth in machine learning with deep neural networks (DNNs), which now represent the state-of-the-art in many AI applications. However, existing DNN models require substantial memory and computing power, which greatly limit their use in resource-constrained systems such as mobile and IoT devices. This project will develop new algorithms and hardware to significantly improve the efficiency of DNNs, and represents an important step towards enabling fast and adaptive DNN executions even in resource-limited environments. In that sense, this project has the potential to enable a wider deployment of machine learning, which will play a critical role in many aspects of the future smart society. The research project will provide research training opportunities to the students as well as new curriculum development by leveraging existing resources at Cornell, e.g., summer camps as well as an outreach programs for high-school students including women.This project aims to significantly improve the efficiency of DNNs while maintaining high accuracy, by co-developing algorithm optimizations and efficient hardware accelerator architecture. While there exist many lines of work on reducing DNN execution costs, the majority of these techniques are designed primarily to improve inference, and perform static optimizations that reduce computation uniformly for all inputs or only exploit a limited form of dynamic sparsity, namely zeros. This project aims to enable new performance-accuracy trade-off points for DNNs that are not possible today by exploiting general forms of dynamic sparsity that are specific to each input at run-time. More specifically, the project plans to investigate input-specific gating techniques that can remove redundant computations for both training and inference, develop dynamic quantization techniques that do not require training data, and design an efficient and unified hardware accelerator architecture that provides both real-world performance and energy improvements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
过去五年,深度神经网络 (DNN) 的机器学习取得了前所未有的发展,目前代表了许多人工智能应用的最先进水平。然而,现有的 DNN 模型需要大量的内存和计算能力,这极大地限制了它们在移动和物联网设备等资源受限系统中的使用。该项目将开发新的算法和硬件,以显着提高 DNN 的效率,并且代表着即使在资源有限的环境中也能实现快速、自适应 DNN 执行的重要一步。从这个意义上说,该项目有潜力使机器学习得到更广泛的部署,这将在未来智能社会的许多方面发挥关键作用。该研究项目将利用康奈尔大学的现有资源,例如夏令营以及针对包括女性在内的高中生的推广计划,为学生提供研究培训机会以及新课程开发。该项目旨在通过共同开发算法优化和高效的硬件加速器架构,在保持高精度的同时显着提高DNN的效率。虽然存在许多降低 DNN 执行成本的工作,但这些技术中的大多数主要旨在改进推理,并执行静态优化,以统一减少所有输入的计算或仅利用有限形式的动态稀疏性,即零。该项目旨在通过利用运行时每个输入特定的动态稀疏性的一般形式,为 DNN 实现新的性能与准确性权衡点,而这在今天是不可能实现的。更具体地说,该项目计划研究特定于输入的门控技术,该技术可以消除训练和推理的冗余计算,开发不需要训练数据的动态量化技术,并设计一个高效且统一的硬件加速器架构,提供现实世界的性能和能源改进。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查进行评估,被认为值得支持。 标准。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A General-Purpose Compute-in-Memory Processor Combining CPU and Deep Learning with Elevated CPU Efficiency and Enhanced Data Locality
结合 CPU 和深度学习的通用内存计算处理器,具有更高的 CPU 效率和增强的数据局部性
- DOI:10.23919/vlsitechnologyandcir57934.2023.10185311
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ju, Yuhao;Wei, Yijie;Chen, Xi;Gu, Jie
- 通讯作者:Gu, Jie
A 65nm Systolic Neural CPU Processor for Combined Deep Learning and General-Purpose Computing with 95% PE Utilization, High Data Locality and Enhanced End-to-End Performance
A%2065nm%20Systolic%20Neural%20CPU%20Processor%20for%20Combined%20Deep%20Learning%20and%20General-Purpose%20Computing%20with%2095%%20PE%20Utilization,%20High%20Data%20Locality%20and%20Enhanced%20End-
- DOI:10.1109/isscc42614.2022.9731757
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ju, Yuhao;Gu, Jie
- 通讯作者:Gu, Jie
A Systolic Neural CPU Processor Combining Deep Learning and General-Purpose Computing With Enhanced Data Locality and End-to-End Performance
脉动神经 CPU 处理器将深度学习和通用计算与增强的数据局部性和端到端性能相结合
- DOI:10.1109/jssc.2022.3214170
- 发表时间:2023
- 期刊:
- 影响因子:5.4
- 作者:Ju, Yuhao;Gu, Jie
- 通讯作者:Gu, Jie
A Differentiable Neural Computer for Logic Reasoning with Scalable Near-Memory Computing and Sparsity Based Enhancement
用于逻辑推理的可微神经计算机,具有可扩展的近内存计算和基于稀疏性的增强
- DOI:10.1109/esscirc55480.2022.9911451
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ju, Yuhao;Guo, Shiyu;Liu, Zixuan;Jia, Tianyu;Gu, Jie
- 通讯作者:Gu, Jie
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Gu其他文献
Influence of headland breakwaters on morphological processes at Longfengtou beach in Haitan Bay, facing the Taiwan Strait
岬角防波堤对面向台湾海峡的海坛湾龙凤头海滩形态过程的影响
- DOI:
10.1007/s11802-018-3868-0 - 发表时间:
2018 - 期刊:
- 影响因子:1.6
- 作者:
Cuiping Kuang;Yue Ma;Binyu Wang;Jueyi Sui;Jie Gu;Jianhui Liu;Gang Lei - 通讯作者:
Gang Lei
Current and turbulence characteristics of perforated box-type artificial reefs in a constant water depth
恒水深下开孔箱式人工鱼礁的水流及湍流特性
- DOI:
10.1016/j.oceaneng.2021.110359 - 发表时间:
2022-01 - 期刊:
- 影响因子:5
- 作者:
Yuhua Zheng;Cuiping Kuang;Jiabo Zhang;Jie Gu;Kuo Chen;Xu Liu - 通讯作者:
Xu Liu
EZH2-mediated suppression of CLDN1 leads to barrier dysfunction in PPI-refractory gastroesophageal reflux disease.
EZH2 介导的 CLDN1 抑制导致 PPI 难治性胃食管反流病的屏障功能障碍。
- DOI:
10.1016/j.dld.2021.10.006 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
T. Ma;Jie Gu;Ye Zhao;Su Li;D. Ge;Duo - 通讯作者:
Duo
Morphological responses of unsheltered channel-shoal system to a major storm: The combined effects of surges, wind-driven currents and waves
无遮蔽的河道-浅滩系统对大风暴的形态响应:浪涌、风驱动流和波浪的综合影响
- DOI:
10.1016/j.margeo.2020.106245 - 发表时间:
2020-06 - 期刊:
- 影响因子:2.9
- 作者:
Cuiping Kuang;Huidi Liang;Jie Gu;Honglin Song;Zhichao Dong - 通讯作者:
Zhichao Dong
Peacock patterns and resurgence in complex Chern–Simons theory
复杂的陈-西蒙斯理论中的孔雀图案和复兴
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:1.2
- 作者:
S. Garoufalidis;Jie Gu;M. Mariño - 通讯作者:
M. Mariño
Jie Gu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Gu', 18)}}的其他基金
Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
- 批准号:
2318807 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: A Chip of Happiness: Device-to-System Developments of Affective Computing for Human-in-the-loop Computer System
SHF:小:幸福的芯片:人在环计算机系统的情感计算的设备到系统开发
- 批准号:
2208573 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Design and Synthesis of Energy-efficient Time-domain Computing for Intelligent Edge Processing
职业:智能边缘处理的节能时域计算的设计和综合
- 批准号:
1846424 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CSR: Small: Development of Distributed Neural Processing Electronics for Whole-Body Computing and Biomedical Sensor Fusion
CSR:小型:用于全身计算和生物医学传感器融合的分布式神经处理电子设备的开发
- 批准号:
1816870 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Greybox Computing: An Associative Computing Methodology with Instruction Directed Power and Clock Management
SHF:小型:灰盒计算:具有指令导向电源和时钟管理的关联计算方法
- 批准号:
1618065 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
XPS: FULL: FP: Design and Synthesis of New Energy-efficient Self-healing Computing Electronics with Real-time Configurability
XPS:FULL:FP:具有实时可配置性的新型节能自愈计算电子设备的设计与合成
- 批准号:
1533656 - 财政年份:2015
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: SHF: Small: An Automated Full-Lifecycle Approach for Improving the Development and Use of Static Analysis
合作研究:SHF:小型:改进静态分析开发和使用的自动化全生命周期方法
- 批准号:
2008905 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: An Automated Full-Lifecycle Approach for Improving the Development and Use of Static Analysis
合作研究:SHF:小型:改进静态分析开发和使用的自动化全生命周期方法
- 批准号:
2007314 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Development and Manufacturing Integrated DNA Circuits
SHF:小型:开发和制造集成 DNA 电路
- 批准号:
1907824 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Fuzzing Cyber-Physical System Development Tool Chains with Deep Learning (DeepFuzz-CPS)
SHF:小型:协作研究:利用深度学习模糊网络物理系统开发工具链 (DeepFuzz-CPS)
- 批准号:
1910017 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Evolving Safety Cases in Agile Development Environments
SHF:小型:敏捷开发环境中不断演变的安全案例
- 批准号:
1909007 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Fuzzing Cyber-Physical System Development Tool Chains with Deep Learning (DeepFuzz-CPS)
SHF:小型:协作研究:利用深度学习模糊网络物理系统开发工具链 (DeepFuzz-CPS)
- 批准号:
1911017 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Semantic Foundations for Hole-Driven Development
SHF:小型:协作研究:空洞驱动开发的语义基础
- 批准号:
1817145 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: SMALL: Streamlining Fork-Based Software Development
SHF:小型:简化基于分叉的软件开发
- 批准号:
1813598 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Semantic Foundations for Hole-Driven Development
SHF:小型:协作研究:空洞驱动开发的语义基础
- 批准号:
1814900 - 财政年份:2018
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Discerning and Recommending Context-Specific Best Practices in DevOps-Oriented Software Development
SHF:小型:协作研究:在面向 DevOps 的软件开发中识别和推荐特定于环境的最佳实践
- 批准号:
1717415 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant














{{item.name}}会员




