SHF: Small: A Chip of Happiness: Device-to-System Developments of Affective Computing for Human-in-the-loop Computer System

SHF:小:幸福的芯片:人在环计算机系统的情感计算的设备到系统开发

基本信息

  • 批准号:
    2208573
  • 负责人:
  • 金额:
    $ 60万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-10-01 至 2025-09-30
  • 项目状态:
    未结题

项目摘要

While the recent technology advancements in artificial intelligence (AI) and low-power wearable electronics have created tremendous improvements to people’s lives, there is still a missing element in existing computer systems, namely, a deep cooperation between user’s personal feeling and the hardware operation of computing devices. As current developments of AI technology are trending towards “human-centric computing”, it is time to reshape the role of computing devices by bringing human’s perception into the loop of the operations. Recently, research on so-called “affective computing” or emotional AI has shown a promising new computing paradigm in which the knowledge of users’ affects, e.g. emotion, are utilized to significantly enhance the quality of service to the users. Unfortunately, as of today, the support and engagement to human’s real-time feelings at the hardware level is very little. This project aims at developing a new class of affective-computing hardware technology where human affects, e.g. mood, emotions, etc., are being real-time tracked by advanced microelectronic devices and further incorporated into the operations of modern computing systems, leading to unprecedented support to people’s daily activities and enhanced efficiency of computing devices. By linking the advanced computing hardware with users’ real-time affects, a new generation of intelligent human-machine interface can be created allowing human to stay at the center of modern wearable electronic devices. This project will create broad impacts to human services such as online business, social media, e-learning, healthcare, etc. By creating advanced lectures, workshops and seminars, significant educational and training opportunities will also be delivered from this project to college students and the broader audience. This project will take a big step towards closing the gap between human’s real-time feelings and operation of modern wearable computing devices. Cross-layer methodology and techniques will be developed to enable affective computing at the hardware level, ranging from design of microelectronic devices to data management, from advanced computing models to system-level software and hardware integration. More specifically, at the device level, leveraging the recent boom of silicon-based neural-processor techniques (novel "happiness accelerators") will be developed enabling real-time affect inference on highly constrained low-power wearable devices. At the algorithm level, this project will develop advanced machine-learning models to not only improve the accuracy of affect classification and related cognition tasks but also enable efficient deployment of affective computing at ultra-low-power edge devices. Furthermore, at the architecture level, this project will develop a series of novel affect-based memory, data and power management techniques to enhance the energy efficiency of modern computing devices. As a demonstration, this project will use fabricated silicon chips and compact wearable devices to create advanced affect-driven computing system providing a new level of human assistance for real-life applications such as online services, Augmented/Virtual Reality(AR/VR) and classroom learning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
虽然近年来人工智能(AI)和低功耗可穿戴电子产品的技术进步给人们的生活带来了巨大的改善,但现有的计算机系统仍然缺少一个元素,即用户的个人感受与计算设备的硬件操作之间的深度合作。随着人工智能技术的发展趋向于“以人为中心的计算”,现在是时候重塑计算设备的角色,将人类的感知融入到操作的循环中。最近,所谓的“情感计算”或情感人工智能的研究显示了一种很有前途的新计算范式,其中利用对用户情感(例如情感)的了解来显著提高对用户的服务质量。不幸的是,到目前为止,硬件层面对人类实时感受的支持和参与非常少。该项目旨在开发一种新型的情感计算硬件技术,通过先进的微电子设备实时跟踪人类的情绪、情绪等情感,并进一步融入现代计算系统的操作中,从而为人们的日常活动提供前所未有的支持,提高计算设备的效率。通过将先进的计算硬件与用户的实时感受相结合,创造新一代智能人机界面,让人站在现代可穿戴电子设备的中心。该项目将对在线业务、社交媒体、电子学习、医疗保健等人类服务产生广泛影响。通过举办高级讲座、讲习班和研讨会,该项目还将为大学生和更广泛的受众提供重要的教育和培训机会。这个项目将在缩小人类实时感受与现代可穿戴计算设备操作之间的差距方面迈出一大步。将开发跨层方法和技术,以实现硬件级别的情感计算,范围从微电子设备的设计到数据管理,从先进的计算模型到系统级软件和硬件集成。更具体地说,在设备层面,利用最近兴起的基于硅的神经处理器技术(新型“幸福加速器”)将被开发出来,在高度受限的低功耗可穿戴设备上实现实时影响推断。在算法层面,该项目将开发先进的机器学习模型,不仅可以提高情感分类和相关认知任务的准确性,还可以在超低功耗边缘设备上高效部署情感计算。此外,在架构层面,该项目将开发一系列新颖的基于影响的存储器、数据和电源管理技术,以提高现代计算设备的能源效率。作为示范,该项目将使用预制硅芯片和紧凑型可穿戴设备来创建先进的情感驱动计算系统,为在线服务、增强/虚拟现实(AR/VR)和课堂学习等现实应用提供新的人类辅助水平。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Human Activity Recognition SoC for AR/VR with Integrated Neural Sensing, AI Classifier and Chained Infrared Communication for Multi-chip Collaboration
用于 AR/VR 的人体活动识别 SoC,具有集成神经传感、AI 分类器和用于多芯片协作的链式红外通信
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jie Gu其他文献

Current and turbulence characteristics of perforated box-type artificial reefs in a constant water depth
恒水深下开孔箱式人工鱼礁的水流及湍流特性
  • DOI:
    10.1016/j.oceaneng.2021.110359
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yuhua Zheng;Cuiping Kuang;Jiabo Zhang;Jie Gu;Kuo Chen;Xu Liu
  • 通讯作者:
    Xu Liu
Peacock patterns and resurgence in complex Chern–Simons theory
复杂的陈-西蒙斯理论中的孔雀图案和复兴
VeriGOOD-ML: An Open-Source Flow for Automated ML Hardware Synthesis
VeriGOOD-ML:自动化 ML 硬件合成的开源流程
  • DOI:
    10.1109/iccad51958.2021.9643449
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    H. Esmaeilzadeh;Soroush Ghodrati;Jie Gu;Shi;A. Kahng;J. Kim;Sean Kinzer;R. Mahapatra;Susmita Dey Manasi;Edwin Mascarenhas;S. Sapatnekar;R. Varadarajan;Zhiang Wang;Hanyang Xu;B. Yatham;Ziqing Zeng
  • 通讯作者:
    Ziqing Zeng
Morphological responses of unsheltered channel-shoal system to a major storm: The combined effects of surges, wind-driven currents and waves
无遮蔽的河道-浅滩系统对大风暴的形态响应:浪涌、风驱动流和波浪的综合影响
  • DOI:
    10.1016/j.margeo.2020.106245
  • 发表时间:
    2020-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Cuiping Kuang;Huidi Liang;Jie Gu;Honglin Song;Zhichao Dong
  • 通讯作者:
    Zhichao Dong
Refined BPS invariants of 6d SCFTs from anomalies and modularity
根据异常和模块化精炼 6d SCFT 的 BPS 不变量
  • DOI:
    10.1007/jhep05(2017)130
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Jie Gu;Min-xin Huang;Amir-Kian Kashani-Poor;Albrecht Klemm
  • 通讯作者:
    Albrecht Klemm

Jie Gu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jie Gu', 18)}}的其他基金

Collaborative Research: CMOS+X: A Device-to-Architecture Co-development and Demonstration of Large-scale Integration of FeFET on CMOS for Emerging Computing Applications
合作研究:CMOS X:用于新兴计算应用的 CMOS 上大规模集成 FeFET 的设备到架构联合开发和演示
  • 批准号:
    2318807
  • 财政年份:
    2023
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Development of Differentiable Memory Augmented Neural CPU Architecture for Cognitive Computing
SHF:小型:用于认知计算的可微内存增强神经 CPU 架构的开发
  • 批准号:
    2008906
  • 财政年份:
    2020
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
CAREER: Design and Synthesis of Energy-efficient Time-domain Computing for Intelligent Edge Processing
职业:智能边缘处理的节能时域计算的设计和综合
  • 批准号:
    1846424
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Continuing Grant
CSR: Small: Development of Distributed Neural Processing Electronics for Whole-Body Computing and Biomedical Sensor Fusion
CSR:小型:用于全身计算和生物医学传感器融合的分布式神经处理电子设备的开发
  • 批准号:
    1816870
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Greybox Computing: An Associative Computing Methodology with Instruction Directed Power and Clock Management
SHF:小型:灰盒计算:具有指令导向电源和时钟管理的关联计算方法
  • 批准号:
    1618065
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
XPS: FULL: FP: Design and Synthesis of New Energy-efficient Self-healing Computing Electronics with Real-time Configurability
XPS:FULL:FP:具有实时可配置性的新型节能自愈计算电子设备的设计与合成
  • 批准号:
    1533656
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

SHF: Small: Acceleration Using Smart Memory-on-Chip
SHF:小型:使用智能片上存储器进行加速
  • 批准号:
    1908601
  • 财政年份:
    2019
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Energy-Efficient and Reliable Communication with Silicon Photonics for Terascale Datacenters-on-Chip
SHF:小型:采用硅光子技术实现兆兆级片上数据中心的节能且可靠的通信
  • 批准号:
    1813370
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Energy Efficient Learning on Chip with Quantized Representations
SHF:小型:具有量化表示的芯片上节能学习
  • 批准号:
    1815899
  • 财政年份:
    2018
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: End-To-End Test Data Analytics For Automotive Chip Production Lines
SHF:小型:汽车芯片生产线的端到端测试数据分析
  • 批准号:
    1618118
  • 财政年份:
    2016
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Secure Power Management and Delivery Exploiting Intelligent Power Networks On-Chip
SHF:小型:利用片上智能电源网络实现安全电源管理和传输
  • 批准号:
    1526466
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: An Asynchronous Network-on-Chip Methodology for Cost-Effective and Fault-Tolerant Heterogeneous SoC Architectures
SHF:小型:一种用于经济高效且容错的异构 SoC 架构的异步片上网络方法
  • 批准号:
    1527796
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Test Chip Design for Maximal Yield Learning
SHF:小型:最大产量学习的测试芯片设计
  • 批准号:
    1527606
  • 财政年份:
    2015
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Non-Uniformity--Centric Program Optimizations for Dynamic Computations on Chip Multiprocessors
SHF:小:片上多处理器动态计算的非均匀性以程序优化为中心
  • 批准号:
    1455404
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: Leveraging Dynamic Pin Switching to Power Up Dark Silicon and Increase Off-Chip Bandwidth
SHF:小型:利用动态引脚切换为暗硅供电并增加片外带宽
  • 批准号:
    1422408
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
SHF: Small: High Performance On-Chip Interconnects Design for Multicore Accelerators
SHF:小型:适用于多核加速器的高性能片上互连设计
  • 批准号:
    1423433
  • 财政年份:
    2014
  • 资助金额:
    $ 60万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了