Behavior of mean curvature flow with driving force and its application

平均曲率流随驱动力的变化及其应用

基本信息

  • 批准号:
    19F19314
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2019
  • 资助国家:
    日本
  • 起止时间:
    2019-11-08 至 2022-03-31
  • 项目状态:
    已结题

项目摘要

駆動力付きの平均曲率流方程式は、結晶表面でのステップの動きを記述するなど結晶成長現象の記述には重要な方程式である。具体的な問題として、例えば以下を考える。結晶表面を上から見てみるとステップは動く曲線とみなせる。このステップの成長は、上から降ってくる分子が付着することによって進んでいく。いつも一定量の分子が付着するという状況では、この曲線の動きは駆動力付き平均曲率流方程式で記述されると考えられている。これが最も簡単なモデルであり、この方程式はしばしばアイコナール・曲率流方程式と呼ばれ、準線形の放物型方程式の典型的な例である。これらは一様な放物型方程式ではないため、そのディリクレ境界値問題は境界での剥離の問題など複雑な問題が生じうる。不純物があるとステップの両端が固定されるかたちになり、数学的にはディリクレ問題となる。曲線がグラフで与えられている場合は、境界上で定数であるというディリクレ条件が維持できるかどうかが問題となる。具体的には境界上で微分係数が無限大になるかがどうかが問題になる。この方程式について確かに境界で微分係数が無限大になることを厳密に示すことに成功した。また障害物問題等も考察した。これらの成果は、偏微分方程式分野で新しく刊行された著名国際学術誌に出版される予定となっている。関連する研究は、本学の三竹大寿准教授との共同研究論文と、明治大学の森龍之介研究員との共同研究論文として公表されている。
The average curvature flow equation for the dynamic force and the important equation for the crystal surface growth phenomenon are described. Specific questions and examples are listed below. The surface of the crystal is smooth and smooth.このステップのgrowthは,上から下ってくるmolecule が Fu することによって入んでいく.いつもA certain amount of molecules がpaid するという condition では, このcurve のmoving きは駆dynamic きaverage curvature flow equation で description されるとtest えられている. The most simple and easy way・Typical examples of the curvature flow equation and the quasi-linear discharge type equation.これらは一様な Put type equation ではないため, そのディリクレ realm problem は realm での peel off の problem な ど 雑な problem が生じうる. The impurities are fixed and the problem of mathematics is solved. Curves and curves are different from each other, and there is no fixed number in the realm.というディリクレconditionsがmaintainできるかどうかがquestionとなる. The problem of the infinite differential coefficient in the specific realm is the same. The equation is correct and the differential coefficient is infinite. The issue of obstacles and other issues will be investigated. Published in 2011, the results of the new research on partial differential equations were published in a famous international academic journal. The research paper is jointly conducted by the related research fellow, the associate professor Mitake Daiju of this school and the researcher Ryunosuke Mori at Meiji University.

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On obstacle problem for mean curvature flow with driving force
带驱动力的平均曲率流障碍问题
  • DOI:
    10.1515/geofl-2019-0002
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giga Yoshikazu;Tran Hung V.;Zhang Longjie
  • 通讯作者:
    Zhang Longjie
Laboratory of Yoshikazu GIGA
GIGA 吉一实验室
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On the generalized Dirichlet problem for graph mean curvature flow with driving force
带驱动力图平均曲率流的广义狄利克雷问题
On mean curvature flow with driving force for symmetric motion with singular initial hypersurface
奇异初始超曲面对称运动的带驱动力的平均曲率流
  • DOI:
    10.1016/j.jde.2019.11.036
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Mori Ryunosuke;Zhang Longjie
  • 通讯作者:
    Zhang Longjie
On curvature flow with driving under fixed boundary condition
固定边界条件下驱动曲率流的研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Longjie;Zhang
  • 通讯作者:
    Zhang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

儀我 美一其他文献

学術研究は災害や復興に 役立つのか? ~原爆からの広島の復興を振り返って~
学术研究对灾难和恢复有用吗?
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    儀我 美一;塚原 東吾,Gaston Demaree,財城真寿美,三上岳彦;Yasumasa Nishiura;久保田明子
  • 通讯作者:
    久保田明子
Surface evolution equations : a level set method
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    儀我 美一
  • 通讯作者:
    儀我 美一
科学技術のための数学解析の必要性
数学分析对科学技术的必要性
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M.Fremond;N.Kenmochi;儀我 美一
  • 通讯作者:
    儀我 美一
On the Interplay between Intrinsic and Extrinsic Instabilities of Spatially Localized Patterns
关于空间局部模式的内在和外在不稳定性之间的相互作用
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    儀我 美一;塚原 東吾,Gaston Demaree,財城真寿美,三上岳彦;Yasumasa Nishiura
  • 通讯作者:
    Yasumasa Nishiura
発掘調査でとらえる歴史地震
通过挖掘捕捉到的历史地震
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    今村 恵子;日高 中;儀我 美保;儀我 美一;井上 治久;出口正之;村田泰輔
  • 通讯作者:
    村田泰輔

儀我 美一的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('儀我 美一', 18)}}的其他基金

衝突や破裂や合体を許す界面運動の数理解析
对允许碰撞、破裂和合并的界面运动进行数学分析
  • 批准号:
    24K00531
  • 财政年份:
    2024
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mathematical analysis on various problems for total variation flow equations
全变分流方程各问题的数学分析
  • 批准号:
    21F20811
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Development of the theory of diffusion equations for analysis on data separation
用于数据分离分析的扩散方程理论的发展
  • 批准号:
    20K20342
  • 财政年份:
    2020
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Analysis on nonlinear diffusion and dynamic singular structure
非线性扩散与动态奇异结构分析
  • 批准号:
    19H00639
  • 财政年份:
    2019
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
強非線形拡散場における形態変動の解析
强非线性扩散场的形态变化分析
  • 批准号:
    26247010
  • 财政年份:
    2014
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
結晶成長形と偏微分方程式の漸近解析
晶体生长形式和偏微分方程的渐近分析
  • 批准号:
    20654017
  • 财政年份:
    2008
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
画像処理に用いられる調和写像流の離散系
图像处理中的谐波映射流离散系统
  • 批准号:
    17654037
  • 财政年份:
    2005
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
視覚と映像の幾何解析
视觉和视频的几何分析
  • 批准号:
    15634008
  • 财政年份:
    2003
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
画像処理と微分方程式
图像处理和微分方程
  • 批准号:
    13894003
  • 财政年份:
    2001
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
結晶成長の数理と微分方程式
晶体生长的数学和微分方程
  • 批准号:
    12874024
  • 财政年份:
    2000
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Exploratory Research

相似国自然基金

空间形式中平均曲率流与几类曲率幂次流收敛性的若干研究
  • 批准号:
    QN25A010037
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平均曲率流及相关子流形的若干问题研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
实空间形式中子流形共形平均曲率流的爆破 及相关问题研究
  • 批准号:
    Q24A010043
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平均曲率流与子流形几何的若干研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
斜平均曲率流与薛定谔流
  • 批准号:
    LY22A010005
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
平均曲率流的奇点性质研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于平均曲率流若干奇点问题的研究
  • 批准号:
    12026251
  • 批准年份:
    2020
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
自由曲面基于平均曲率流的构造与形变方法
  • 批准号:
    LY21F020009
  • 批准年份:
    2020
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
关于平均曲率流若干奇点问题的研究
  • 批准号:
    12026262
  • 批准年份:
    2020
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
完备仿射超曲面的Bernstein问题及其在平均曲率流中的应用
  • 批准号:
    11871197
  • 批准年份:
    2018
  • 资助金额:
    53.0 万元
  • 项目类别:
    面上项目

相似海外基金

Canonical mean curvature flow and its application to evolution problems
正则平均曲率流及其在演化问题中的应用
  • 批准号:
    23H00085
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Toward applications of the crystalline mean curvature flow
晶体平均曲率流的应用
  • 批准号:
    23K03212
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Geometric analysis of mean curvature flow with dynamic contact angle structure
动态接触角结构平均曲率流动的几何分析
  • 批准号:
    23K12992
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2306233
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
Mean curvature flow of small sections of the tangent bundle
切束小截面的平均曲率流
  • 批准号:
    572922-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    University Undergraduate Student Research Awards
Research of submanifolds by using the mean curvature flow and Lie group actions, and its application to theoretical physics
利用平均曲率流和李群作用研究子流形及其在理论物理中的应用
  • 批准号:
    22K03300
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean Curvature Flow and Singular Minimal Surfaces
平均曲率流和奇异极小曲面
  • 批准号:
    2203132
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Standard Grant
Singularities of Minimal Hypersurfaces and Lagrangian Mean Curvature Flow
最小超曲面的奇异性和拉格朗日平均曲率流
  • 批准号:
    2203218
  • 财政年份:
    2022
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2105576
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
Entropy in Mean Curvature Flow and Minimal Hypersurfaces
平均曲率流和最小超曲面中的熵
  • 批准号:
    2146997
  • 财政年份:
    2021
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了