Investigation of the long-term degradation of the high-frequency behavior of SiGe heterojunction bipolar transistors and circuits

SiGe异质结双极晶体管和电路高频行为长期退化的研究

基本信息

项目摘要

Recent technology development of silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) has led to maximum operating frequencies of 500 GHz and beyond at 1.6 V breakdown voltage (BVCEO) even for industry prototyping processes. BiCMOS technology, resulting from combining high-speed HBT circuits with moderate-cost digital CMOS, and SiGe HBT performance projections far into the THz region, have spurred increasing interest in utilizing the millimeter (mm)-wave and THz frequency spectrum for compact commercial electronic applications. Such high performance comes though at the cost of very high current densities, high self-heating, and low breakdown voltages which are presently assumed to limit the output power at high frequencies. Pushing the device performance boundaries though, the above mentioned effects can lead to an acceleration of device degradation. So far, the latter is only described by a static safe operating area (SOA), using a static base current that is mostly irrelevant for HF circuit design, while information on the associated loss of performance under high-frequency (HF) operation has not been available. In the first phase of this project, it was demonstrated that SiGe HBTs are extremely rugged and can be operated far beyond the foundry recommended SOA before a measurable degradation occurs. This implies a potential for achieving at high frequencies significantly larger output power than presently assumed. Also, for the measured device geometry, experimental evidence has been found for degradation of various HF performance related parameters due to dynamic stress. Therefore, the main objectives of this second phase of the project are: (i) Systematic experimental evaluation of dynamic degradation in advanced SiGe HBTs as function of geometry and frequency for investigating the physical origin of the observed degradation. (ii) Exploration of the achievable high-frequency output power limit and associated degradation related trade-offs during circuit design. (iii) Compact modeling of the observed degradation effects and development of an approach for estimating degradation and reliability during HF circuit simulation and design. (iv) Experimental stress tests of selected HF circuit building blocks and comparison of their performance degradation over time with circuit simulation. This work will span over a wide frequency range (10 GHz to 180 GHz) and will go significantly beyond conventional static reliability tests. Its results will enable HF circuit design including degradation effects of the relevant transistor parameters.
硅锗(SiGe)异质结双极晶体管(HBT)的最新技术发展已使1.6 V击穿电压(BVCEO)下的最大工作频率达到500 GHz及以上,即使对于工业原型制作工艺也是如此。BiCMOS技术是将高速HBT电路与中等成本的数字CMOS相结合的产物,SiGe HBT性能预测远至THz区域,这激发了人们对利用毫米波和THz频谱用于紧凑型商业电子应用的兴趣。这种高性能是以非常高的电流密度、高自热和低击穿电压为代价的,目前认为这些因素限制了高频下的输出功率。然而,推动器件性能边界,上述效应可能导致器件退化加速。到目前为止,后者仅通过静态安全工作区(SOA)来描述,使用与HF电路设计基本无关的静态基极电流,而有关高频(HF)操作下相关性能损失的信息尚不可用。在该项目的第一阶段,已经证明SiGe HBT非常坚固,并且在出现可测量的退化之前,可以在远远超过代工厂推荐的SOA的情况下运行。这意味着在高频下实现比目前假设的大得多的输出功率的潜力。此外,对于所测量的设备的几何形状,实验证据已被发现的各种HF性能相关的参数,由于动态应力的退化。因此,该项目第二阶段的主要目标是:(一)系统的实验评估先进的SiGe HBT的动态退化的几何形状和频率的函数,调查观察到的退化的物理起源。(ii)探索可实现的高频输出功率极限和电路设计过程中与降级相关的权衡。(iii)在高频电路仿真和设计过程中,对观察到的退化效应进行紧凑建模,并开发一种估计退化和可靠性的方法。(iv)对选定的HF电路构建块进行实验应力测试,并将其性能随时间的退化与电路仿真进行比较。这项工作将跨越很宽的频率范围(10 GHz至180 GHz),并将大大超过传统的静态可靠性测试。其结果将使高频电路设计,包括相关的晶体管参数的退化影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Michael Schröter其他文献

Professor Dr.-Ing. Michael Schröter的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Michael Schröter', 18)}}的其他基金

HBT modeling and circuit design for low-power mm-wave applications
低功耗毫米波应用的 HBT 建模和电路设计
  • 批准号:
    285829242
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical and experimental exploration of InP heterojunction bipolar transistor (HBT) characteristics for device and circuit design
用于器件和电路设计的 InP 异质结双极晶体管 (HBT) 特性的理论和实验探索
  • 批准号:
    110304428
  • 财政年份:
    2009
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical and experimental investigation of advanced SiGe HBTs under extreme operating conditions and compact model development
极端工作条件下先进 SiGe HBT 的理论和实验研究以及紧凑模型开发
  • 批准号:
    21377206
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Theoretical an experimental investigation of noise in advanced SiGe BiCMOS process technologies
先进 SiGe BiCMOS 工艺技术中噪声的理论和实验研究
  • 批准号:
    5445768
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental characterization and modeling of most advanced Silicon-Germanium HBT technologies from 4 K to 423 K
最先进的硅-锗 HBT 技术(4 K 至 423 K)的实验表征和建模
  • 批准号:
    377861290
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Exploration of SiGe HBTs for power amplifiers in the 200 GHz to 500 GHz frequency range
200 GHz 至 500 GHz 频率范围内功率放大器的 SiGe HBT 探索
  • 批准号:
    462053628
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Compact Modeling and Device Simulation of TerahertzInGaAs/InP Heterojunction Bipolar Transistors
太赫兹InGaAs/InP异质结双极晶体管的紧凑建模和器件仿真
  • 批准号:
    438512651
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Experimental characterization and compact modeling of high-field effects in CNTFET channels
CNTFET 通道中高场效应的实验表征和紧凑建模
  • 批准号:
    464113502
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Ultra-scaled SiGeC HBTs beyond the existing roadmap - A simulation based study
超越现有路线图的超大规模 SiGeC HBT - 基于模拟的研究
  • 批准号:
    466103046
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Modeling of non-linear large-signal dynamic effects in SiGe heterojunction bipolar transistors
SiGe 异质结双极晶体管非线性大信号动态效应建模
  • 批准号:
    317219111
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

基于Relm-β核转位激活EndMT促进肺动脉高压研究肺心汤预防 Long COVID 机制
  • 批准号:
    2025JJ90008
  • 批准年份:
    2025
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
维生素D调控巨噬细胞极化在改善“Long COVID”中作用和机制的分子流行病学研究
  • 批准号:
    82373643
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
long non-coding RNA(lncRNA)-activatedby TGF-β(lncRNA-ATB)通过成纤维细胞影响糖尿病创面愈合的机制研究
  • 批准号:
    LQ23H150003
  • 批准年份:
    2023
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Long-TSLP和Short-TSLP佐剂对新冠重组蛋白疫苗免疫应答的影响与作用机制
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目
水稻LONG PANICLE1基因调控穗长的分子机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
long-TSLP诱导的M2型巨噬细胞调控肺成纤维细胞线粒体融合在哮喘气道重塑中的作用和机制
  • 批准号:
    81970032
  • 批准年份:
    2019
  • 资助金额:
    55.0 万元
  • 项目类别:
    面上项目
不同远距离基因互作对胚胎干细胞中Sox2基因调控的研究
  • 批准号:
    31970592
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
转座因子调控多能干细胞染色质三维结构中的作用
  • 批准号:
    31970589
  • 批准年份:
    2019
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
LONG8及其互作蛋白LGIP1调控水稻籽粒大小的分子机理研究
  • 批准号:
    31871219
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
拟南芥微管结合蛋白Long Seed1调控种子大小的分子机制研究
  • 批准号:
    31770205
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Investigation of long-term suppression and Sustainability of sleep bruxism by a vibration splint
振动夹板对睡眠磨牙症的长期抑制和可持续性研究
  • 批准号:
    23K09258
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Long-term investigation for hypoxic training on athletics sprint performance
低氧训练对田径短跑成绩的长期研究
  • 批准号:
    23K10726
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Early Phase Pain Investigation Clinical Network Hub at the University of Washington
华盛顿大学早期疼痛调查临床网络中心
  • 批准号:
    10903640
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of non-canonical opioid signaling in the prefrontal cortex of alcohol-dependent rats
酒精依赖大鼠前额叶皮层非典型阿片类药物信号传导的研究
  • 批准号:
    10811444
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of acute and long-term neuroimmune changes induced by early-life opioid exposure and withdrawal
早期阿片类药物暴露和戒断引起的急性和长期神经免疫变化的研究
  • 批准号:
    10749139
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Investigation of Professional Coaching as an Intervention to Support the Success of URG Biomedical Ph.D. Students
专业辅导作为支持 URG 生物医学博士成功的干预措施的调查
  • 批准号:
    10731591
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
An Investigation Of Long Term Integrative Mechanisms In A Colonial Context
殖民背景下长期整合机制的调查
  • 批准号:
    2221018
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Investigation of the long-term autonomic effects of COVID-19 using multimodal physiological monitoring and neuroimaging
使用多模式生理监测和神经影像学研究 COVID-19 的长期自主神经效应
  • 批准号:
    469588
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Operating Grants
Longitudinal MRI Investigation of Traumatic Microvascular Injury
创伤性微血管损伤的纵向 MRI 研究
  • 批准号:
    10571853
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
Investigation on chemical mechanisms responsible for long-term carbon sequestration in sediment of shallow coastal vegetated habitats
浅海植被栖息地沉积物长期固碳化学机制研究
  • 批准号:
    22H03717
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了