ベクトル束のモジュライ空間の研究

向量丛模空间的研究

基本信息

  • 批准号:
    09740026
  • 负责人:
  • 金额:
    $ 1.41万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
  • 财政年份:
    1997
  • 资助国家:
    日本
  • 起止时间:
    1997 至 1998
  • 项目状态:
    已结题

项目摘要

最近楕円有理曲面上のベクトル束のモジュライ空間のオイラー数が数理物理の進展により計算された。これはN=4位相的ヤンミルズ理論における双対性と新たに提出された正則アノマリーに関する漸化式予想にモジュライ空間の基本的性質を組合わせて得られた。私は数理物理を使って計算されたオイラー数を数学的手法により階数が2の場合に計算し、その値が完全に一致することを確かめた。この事は双対性の存在の根拠を与え、また正則アノマリーに関する漸化式予想に対する根拠を与える。N=4位相的ヤンミルズ理論における双対性を確認するのは一般に大変難しく、知られている例は射影平面とK3曲面の場合だけであった。私の計算は新たな例を与えると同時に、K3曲面の場合より複雑で、しかもきれいな関数で記述できた点でも興味深いと思われる。さて私の利用した方法はwa11 crossing公式を適用するというもので、高い階数の場合には今のところ通用しないと思っている。楕円ファイバー構造を利用した計算方法を確立し、他の階数の場合も扱えるようにするのは今後の課題である。
Recently, there has been a lot of progress in mathematical physics, mathematical and physical calculations on rational surfaces. On the basis of the theory of the four-phase network, the new theory of double-phase communication proposes a formula that allows you to change the basic properties of space. In the private practice of mathematical physics, the method of mathematics is to make sure that the calculation is completely consistent. There is a relationship between the root and the root of the double sex, and there is a formula that you want to know. The theory of the NV4 phase confirms that it is generally known that the projective plane of the K3 surface is closed. The new calculation example is the same time as the system, the K3 curved surface is a copy of the copy, and the number of data is recorded. Using the wa11 crossing formula, you can use the method to calculate the number of users, and the number of users. By using the method of computer calculation, we can make sure that we can make sure that we are going to have a problem in the future.

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Yoshioka K.: "Some notes on the moduli of stable sheaves on elliptic surfaces" Nagoya Math.J.(発表予定).
Yoshioka K.:“关于椭圆表面上稳定滑轮模量的一些注释”Nagoya Math.J(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Yoshioka Kota: "A rote on the universal family of moduli of stable sheaves" J.rene angew. Math. (予定). (1998)
Yoshioka Kota:“关于稳定滑轮模数的通用家族”J.rene angew(计划)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

吉岡 康太其他文献

共同注意の種類と発達
共同注意的类型和发展
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉岡 康太;中島 啓;大藪泰
  • 通讯作者:
    大藪泰
The Betti numbers of the moduli space of stable sheaves of rank 2 on ℙ[2]
ℙ[2] 上 2 阶稳定滑轮模空间的贝蒂数
  • DOI:
    10.11501/3075786
  • 发表时间:
    1994
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    吉岡 康太
  • 通讯作者:
    吉岡 康太
Instanton counting and Donaldson invariants
瞬时计数和唐纳森不变量
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    吉岡 康太;中島 啓
  • 通讯作者:
    中島 啓
New developments in algebraic geometry, integrable systems and mirror symmetry (RIMS, Kyoto, 2008)
代数几何、可积系统和镜像对称的新发展(RIMS,京都,2008 年)
  • DOI:
    10.2969/aspm/05910000
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    齋藤 政彦;細野 忍;吉岡 康太
  • 通讯作者:
    吉岡 康太
A geometric approach to L-function
L 函数的几何方法

吉岡 康太的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('吉岡 康太', 18)}}的其他基金

安定層のモジュライ空間の研究
稳定层模空间的研究
  • 批准号:
    23K03053
  • 财政年份:
    2023
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Moduli of coherent sheaves and complexes
相干滑轮和复合体的模量
  • 批准号:
    18H01113
  • 财政年份:
    2018
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ベクトル束のモジュライの研究
向量丛模的研究
  • 批准号:
    08740028
  • 财政年份:
    1996
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

代数的ベクトル束のモジュライの研究
代数向量丛模的研究
  • 批准号:
    17740013
  • 财政年份:
    2005
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
ベクトル束やそのモジュライを用いる手法による代数多様体の研究
使用向量丛及其模研究代数簇
  • 批准号:
    99J04685
  • 财政年份:
    1999
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
射影スキーム上の放物ベクトル束のモジュライについて
关于投影方案上抛物线向量丛的模
  • 批准号:
    97J03317
  • 财政年份:
    1998
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数曲面上のベクトル束とアファイン代数
代数面上的向量丛和仿射代数
  • 批准号:
    09740008
  • 财政年份:
    1997
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ベクトル束のモジュライの研究
向量丛模的研究
  • 批准号:
    08740028
  • 财政年份:
    1996
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
安定ベクトル束の構成とそのモジュライの研究
稳定向量丛的构造及其模的研究
  • 批准号:
    07210240
  • 财政年份:
    1995
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
安定ベクトル束のモジュライ空間と、代数曲面の微分構造への応用
稳定向量丛的模空间及其在代数曲面微分结构中的应用
  • 批准号:
    06740036
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ケーラー多様体上のベクトル束の研究
卡勒流形上向量丛的研究
  • 批准号:
    06221250
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
ケーラー多様体上のベクトル束の研究
卡勒流形上向量丛的研究
  • 批准号:
    06640135
  • 财政年份:
    1994
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
ベクトル束のモジュライ空間と可積分系
向量丛和可积系统的模空间
  • 批准号:
    05230027
  • 财政年份:
    1993
  • 资助金额:
    $ 1.41万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了