脳磁図分析の解析的研究

脑磁图分析的分析研究

基本信息

  • 批准号:
    12874022
  • 负责人:
  • 金额:
    $ 1.15万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2000
  • 资助国家:
    日本
  • 起止时间:
    2000 至 2002
  • 项目状态:
    已结题

项目摘要

医学数学シンポジウムを各年度で開催し、脳磁図分析の数理解法アルゴリズムの開発に必要な基礎知識や基礎データを集め、医療の専門家と詳しく議論した。次に脳磁図分析の基礎となる方程式の解析的研究を行い、脳波を記述する積分方程式の一意可解性を証明するとともに、脳磁図分析の完全逆問題が非適切であることを示し双極子仮説の妥当性について考察を加えた。またMaxwell方程式やStokes方程式の解の界面正則性について、解析的に新しい結果を得た。これらの考察に基づいて順問題と逆問題を数学的に正しく定式化することができた。この成果に基づいて非適切問題の解法に汎用性のある平行最適化の数学的理論を構築し、approaching-freezing-meltingからなる解法アルゴリズム(Paralope)を考案した。次にこの平行最適化の理論を脳磁図分析に適用し、meltingにおける2つの方法、すなわち位置に対するbindingとモーメントに関するstreamingを開発し、数値実験によって双極子数を仮定しない双極子仮説のもとでの脳磁図分析に有効であることを確認した。これらは素片分布を量子化するためにいずれも実解析学の基礎的なアイデアを応用したものである。またモーメントと位置の摂動に対するバイアスをかける式を導出するとともにlocal minimumに陥ることを防ぐためのholeに関する理論を構築した。さらにこれらの理論を不足決定に設定された数理解法アルゴリズムである「電流素片分布法」に装着してデータ分析のためのソフトを開発した。この際に十分に量子化された段階ではデータの使用量を減らして過剰決定系に変更する方法を開発した。これによってholeに陥ることを避けるとともに分析データの信頼性を高めることができることを実証することができた。
Medical mathematics is the foundation of mathematical analysis and development, and medical science is the foundation of mathematical analysis. A study of the analytical basis of magnetic field analysis, a demonstration of the solvability of integral equations, and an investigation of the soundness of dipole theory are also included. Maxwell equations and Stokes equations are solved with interface regularity and analytical novelty. This paper discusses the basic problems of mathematics, and discusses the basic problems of mathematics The results of this paper are based on the general application of parallel optimization theory to solve the problem of inappropriateness, approaching-freezing and solving the problem of parallel optimization. The theory of parallel optimization is applicable to magnetic field analysis, melting, streaming, location, number, dipole number, and magnetic field analysis. The quantum distribution of these particles is the basis of analytical theory. The theory of "hole" is derived from "hole". The theory is not enough to determine the mathematical solution. This is the first time that we have developed a method for reducing the amount of quantization we use. This is the first time I've ever seen a woman.

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Kubo, T.Suzuki: "Integral equation in electroencephalography"Adv.Math.Sci.Appl.. (掲載予定).
A.Kubo、T.Suzuki:“脑电图积分方程”Adv.Math.Sci.Appl..(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
T.Kobayashi, T.Suzuki, K.Watanabe: "Interface regularity for Maxwell and Stokes systems"Osaka J.Math.. (掲載予定).
T.Kobayashi、T.Suzuki、K.Watanabe:“Maxwell 和 Stokes 系统的接口正则性”Osaka J.Math..(待出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
足立義昭, 下川原正博, 鈴木貴: "脳磁図分析の現況と課題"日本応用数理学会誌. 11. 13-26 (2001)
Yoshiaki Adachi、Masahiro Shimokawara、Takashi Suzuki:“脑磁图分析的现状和问题”日本应用数学学会杂志 11. 13-26 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

鈴木 貴其他文献

子宮内膜癌におけるDehydroepiandrosteroneの直接作用に関する検討
脱氢表雄酮对子宫内膜癌直接作用的研究
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    三木康宏;高木清司;鈴木 貴;伊藤 潔
  • 通讯作者:
    伊藤 潔
Applied Analysis: Mathematics for Science, Technology, Engineering(Third Edition)
应用分析:科学、技术、工程数学(第三版)
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ando Kazunori;Ji Yong-Gwan;Kang Hyeonbae;Kawagoe Daisuke;Yoshihisa Miyanishi;M. Sasada;鈴木 貴;鈴木 貴;鈴木 貴;鈴木 貴;鈴木 貴;鈴木 貴;鈴木 貴;鈴木 貴;Takashi Suzuki
  • 通讯作者:
    Takashi Suzuki
CRISPR-Cas12aによる欠失変異導入のプロファイリング
使用 CRISPR-Cas12a 分析缺失突变的引入
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森泉 寿士;中村 貴紀;曺 永旻;鈴木 貴;武川 睦寛;高橋剛
  • 通讯作者:
    高橋剛
Mathematical analysis of the spatio-temporal regulation of the SAPK pathway
SAPK通路时空调控的数学分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森泉 寿士;中村 貴紀;曺 永旻;鈴木 貴;武川 睦寛
  • 通讯作者:
    武川 睦寛
数理解析を活用したSAPKシグナル時空間制御機構の解明
利用数学分析阐明 SAPK 信号的时空控制机制
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    森泉 寿士;中村 貴紀;曺 永旻;鈴木 貴;武川 睦寛
  • 通讯作者:
    武川 睦寛

鈴木 貴的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('鈴木 貴', 18)}}的其他基金

乳癌における性ホルモンによるコンドロイチン硫酸の生理活性調節に関する研究
性激素对乳腺癌硫酸软骨素生理活性的调节研究
  • 批准号:
    24K11736
  • 财政年份:
    2024
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
視覚障がい者の物理学習を支援するマルチモーダルな学習教材の開発
开发多模式学习材料以支持视障人士的物理学习
  • 批准号:
    21K02843
  • 财政年份:
    2021
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
細胞膜分子動態数理モデリングによるがん悪性化メカニズムの解明
通过细胞膜分子动力学数学建模阐明癌症恶性机制
  • 批准号:
    15KT0016
  • 财政年份:
    2015
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
脈管形成の数理モデルに関する解析的研究
血管生成数学模型的分析研究
  • 批准号:
    15654022
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
性ステロイド依存性腫瘍におけるプロゲステロン局所調節機構の解析
孕激素在性激素依赖性肿瘤中的局部调节机制分析
  • 批准号:
    12770079
  • 财政年份:
    2000
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
性ステロイド依存性腫瘍におけるestradiol局所調節機構の解析
雌二醇在性激素依赖性肿瘤中的局部调控机制分析
  • 批准号:
    09770108
  • 财政年份:
    1997
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
非線形偏微分方程式論における実解析的方法
非线性偏微分方程理论中的实解析方法
  • 批准号:
    08640196
  • 财政年份:
    1996
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
非線形偏微分方程式論における実解析的方法
非线性偏微分方程理论中的实解析方法
  • 批准号:
    06640246
  • 财政年份:
    1994
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線形偏微分方程式論における実解析的方法
非线性偏微分方程理论中的实解析方法
  • 批准号:
    04640181
  • 财政年份:
    1992
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
非線型問題における微分幾何学的方法と複素関数論的方法
非线性问题的微分几何方法和复函数方法
  • 批准号:
    62740078
  • 财政年份:
    1987
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)

相似海外基金

多倍長数値計算環境下での逆問題・非適切問題の数値解析手法の確立
多精度数值计算环境下反问题和不适合问题数值分析方法的建立
  • 批准号:
    15654017
  • 财政年份:
    2003
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
「非適切問題における適切クラスの決定と積分方程式を利用した非適切問題の数値解析」
“确定不适当问题的适当类别以及使用积分方程对不适当问题进行数值分析”
  • 批准号:
    08874009
  • 财政年份:
    1996
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
非適切問題における適切クラスの決定と適切クラスを利用する非適切問題の数値解析
确定不适当问题的适当类别,并使用适当的类别对不适当问题进行数值分析
  • 批准号:
    07854008
  • 财政年份:
    1995
  • 资助金额:
    $ 1.15万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了