「非適切問題における適切クラスの決定と積分方程式を利用した非適切問題の数値解析」
“确定不适当问题的适当类别以及使用积分方程对不适当问题进行数值分析”
基本信息
- 批准号:08874009
- 负责人:
- 金额:$ 1.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Exploratory Research
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 1998
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Helmholtz方程式で記述される逆散乱問題を中心に解析を行なった。R.Kressの手法に従えば、Helmholtz方程式で記述される音場の未知散乱物体を決定する逆問題は、境界積分方程式によって記述されることが知られている。この積分方程式にたいし、これまではTikhonov正則化法を利用する数値解析が行われてきた。これに対し、本研究ではこの非適切問題のいわゆる適切成分を考慮して、多倍長数値計算を利用して直接計算を行うことを試み、成果を得ている。一般に非適切問題は、いわゆる高周波成分に対知るSobolevノルムでの評価が不可能であることがその非適切性であり、これは数値計算上での丸め誤差に対する不安定性を意味するものである。しかし、見方を変えて与えるデータ構造を制限すれば適切化される非適切問題も多い。本研究ではこの点に目をつけ、一般には非適切な問題の適切成分を調べ、そこへの制限を伴った数値計算によって安定した数値計算を行うことを試みた。しかし、実際の数値計算では丸め誤差が伴うために理論通の計算を行うことは容易ではない。本研究ではこの部分を多倍長計算という手法にたより、理論の計算機での実現について検討を行った。理論的には適切成分と言えども多倍長計算にのみ頼って計算を行うことは不可能であるが、本研究で扱った程度の逆散乱問題ではそれなりに精度が出ることが示された。さらに、この研究を通して、順問題(通常の楕円型境界値問題など)に対する数値解析に境界要素法を利用する利点も分かった。すなわち、これまでの境界要素法研究で主張されている境界要素法の高精度性が、本研究の非適切問題の解析を通して示された。
The Helmholtz equation is a description of the inverse straggler problem and its center is analyzed. R.Kress's Technique, Helmholtz's Equation, and Sound Field's Unknown Powder The inverse problem of determining the random object, and the description of the realm integral equation are as follows.このintegral equation にたいし, これまではTikhonov regularization method をutilize するnumber value analysis が行われてきた.これに対し、This study is about non-appropriate issues and appropriate components are considered. して、 To calculate the value of a multiple-length number, use the method to directly calculate the value and try it out, and the result will be obtained. General にNon-appropriate questionは、いわゆるHigh frequency componentに対知るSobolevノルムでの Comment価がimpossibleであるこThe non-adaptiveness of the non-adaptiveness of the calculation of the numerical value and the uncertainty of the error of the calculation of the numerical value are the meaning of the uncertainty.しかし, square を変えて and えるデータ structure を limit すれば appropriate to される non-appropriate problem も多い. The main points of this study are the key points, the general problems, the inappropriate components, and the appropriate components.こへのlimited を companion ったnumerical value calculation によって stable したnumerical value calculation を行うことをtrial みた.しかし、実记のnumerical value calculation では Maru めError が companion うためにTheoretical pass のcalculation を行 うことはeasy ではない. This research consists of a multi-length calculation method, a theoretical computer, and a computer theory. Theoretical explanation of the appropriate components and calculations of multiple times and lengths of calculations and line calculations are impossible.るが、This study is based on the degree of inverse straggler problem and the accuracy of the problem.さらに、この研究を通して、Shun problem (usually the 楕円 type boundary value problemなど)に対するnumerical value analysisにrealm element methodをutilize the advantage pointも分かった. The research on the boundary element method by Nakoya and Tsukasa advocates the high accuracy of the boundary element method, and the analysis of non-appropriate problems in this study is based on the explanation.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
西田 孝明: "「Heat convection of compressible fluid」" Recent Developments in Domain Decomposition Methods and Flow Problems. 107-115 (1998)
Takaaki Nishida:“可压缩流体的热对流”域分解方法和流动问题的最新进展 107-115 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
磯 祐介 他: "熱方程式の逆問題-初期逆数の台の決定" 応用数理学会論文誌. vol.8. 19-23 (1998)
Yusuke Iso 等人:“热方程的反问题 - 初始互易平台的确定”应用数学学会汇刊,第 8 卷(1998 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
磯 祐介: "「熱方程式の逆問題」" 応用数理学会論文誌. 8・1. 19-23 (1998)
Yusuke Iso:“‘热方程反问题’”应用数学学会学报 8・1(1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
磯 祐介其他文献
64bit計算環境に適した多倍長計算環境の構築と非適切問題の数値計算
适合64位计算环境的多精度计算环境的构建以及不适当问题的数值计算
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
藤原 宏志;磯 祐介 - 通讯作者:
磯 祐介
Colored quadrangulation with Steiner points
带斯坦纳点的彩色四边形
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
M. Kobayashi;A. Nakamoto and T. Yamaguchi;Shinji Adachi and Tatsuya Watanabe;磯 祐介;V. Alvarez and A. Nakamoto - 通讯作者:
V. Alvarez and A. Nakamoto
Faithful embeddings of graphs on closed surfaces
图在闭合曲面上的忠实嵌入
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Norihisa Ikoma; Hitoshi Ishii;磯 祐介;Seiya Negami - 通讯作者:
Seiya Negami
多倍長計算環境の64ビットPCでの実現と高精度数値積分公式への適用
64位PC上多精度计算环境的实现及高精度数值积分公式的应用
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
藤原 宏志;磯 祐介 - 通讯作者:
磯 祐介
磯 祐介的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('磯 祐介', 18)}}的其他基金
特異性・非適切性が本質的な微分方程式の数値計算における多倍長数値計算環境の活用
多精度数值计算环境在奇异性和不适当性至关重要的微分方程数值计算中的利用
- 批准号:
23K20811 - 财政年份:2024
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Effective use of multi-precision arithmetic on floating number system of digital computers aiming at numerical computations of differential equations with singulari or ill-posedness
针对奇异或不适定微分方程的数值计算,有效利用数字计算机浮点数系统的多精度运算
- 批准号:
21H00999 - 财政年份:2021
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of Mathematical Modeling and Analysis for Antidune in Rivers
河流反沙丘数学建模与分析研究
- 批准号:
21K18586 - 财政年份:2021
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
高解像光トモグラフィの実現に向けての数学的基礎研究
实现高分辨率光学层析成像的基础数学研究
- 批准号:
21654016 - 财政年份:2009
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
蛍光CTの基礎となる輸送方程式の逆問題の解の数値的再構成
荧光 CT 输运方程反问题解的数值重构
- 批准号:
17654023 - 财政年份:2005
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Exploratory Research
特定領域「応用逆問題解析」の申請へ向けての調査と国内調整
特定领域“应用反问题分析”应用的调查和国内协调
- 批准号:
15634005 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
多倍長数値計算環境下での逆問題・非適切問題の数値解析手法の確立
多精度数值计算环境下反问题和不适合问题数值分析方法的建立
- 批准号:
15654017 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Exploratory Research
逆問題の解の再構成手法の確立
逆问题解重构方法的建立
- 批准号:
13894002 - 财政年份:2001
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
楕円型境界値問題の高精度解法としての境界要素法
边界元法作为椭圆边值问题的高精度解
- 批准号:
11874019 - 财政年份:1999
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Exploratory Research
非適切問題における適切クラスの決定と適切クラスを利用する非適切問題の数値解析
确定不适当问题的适当类别,并使用适当的类别对不适当问题进行数值分析
- 批准号:
07854008 - 财政年份:1995
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
相似海外基金
多倍長数値計算環境下での逆問題・非適切問題の数値解析手法の確立
多精度数值计算环境下反问题和不适合问题数值分析方法的建立
- 批准号:
15654017 - 财政年份:2003
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Exploratory Research
非適切問題における適切クラスの決定と適切クラスを利用する非適切問題の数値解析
确定不适当问题的适当类别,并使用适当的类别对不适当问题进行数值分析
- 批准号:
07854008 - 财政年份:1995
- 资助金额:
$ 1.28万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)














{{item.name}}会员




