非線形特殊多項式の数論

非线性特殊多项式的数论

基本信息

  • 批准号:
    14654009
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Exploratory Research
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

ヤブロンスキー多項式については、前年にその最低次の項の係数の明示的な公式を与え、また一般の係数をその最低次係数で割ったものが多項式のインデックスに関して多項式関数であることを示し、更に多項式を素数で還元したときの周期的な様子を明らかにしたが、その知見をもとに多項式のガロア群(それはすべて対称群であろうという梅村の予想がある)を計算するべく計算機実験を行った。実例を見る限りはすべて対称群であった。その証明のために、まず線形な場合、特に、超特異楕円曲線のj不変量との関係で以前みつけた、ある微分方程式の解から生じる特殊多項式(超幾何多項式になっている)のガロア群を計算し、ある条件の下で実際対称群になることを証明した。ヤブロンスキー多項式の場合にも前年に得た知見によって同じような証明が機能すると期待したが、係数についての知見の少なさによってそれは実現しなかった。上記の微分方程式について、重さに対応するパラメーターを5分の整数とたものから、これまでのように古典的なガウスの超幾何多項式では書けない多項式の系列を見つけ、そのいくつかの性質を証明した。この解はラマヌジャンやクラインの関数と密接に関係し、また数理物理でもしばしば現れる。それの標数pでの振る舞いについても予想を得た。その予想の証明はしていないが、ここまでをまとめて論文とした。
A polynomial of the lowest degree is expressed in terms of coefficients of the lowest degree of the polynomial of the previous year. A polynomial of the lowest degree is expressed in terms of coefficients of the lowest degree of the polynomial of the previous year. A polynomial of the lowest degree is expressed in terms of prime numbers of the polynomial of the previous year. The computer is running on the computer. For example, if you want to see a group of people, It is proved that the relationship between the j-invariance of a linear curve and the solution of a differential equation can be calculated by calculating the group of special polynomials (hypergeometric polynomials) under certain conditions. In the case of a polynomial, the previous year's knowledge was obtained, and the same function was proved. The above differential equations are described in detail in detail below. The properties of the classical hypergeometric polynomials are proved. The relationship between mathematical physics and physics is closely related. The standard number p is the number of vibrations in the dance. I want to prove that I am not in love with you.

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On modular forms of weight (6n+1)/5 satisfying a certain differential equation
关于满足一定微分方程的权重(6n 1)/5的模形式
Kaneko, Masanobu: "On coefficients of Yablonskii-Vorob'ev polynomials"J.Math.Soc.Japan. 55-4. 985-993 (2003)
Kaneko, Masanobu:“关于 Yablonskii-Vorobev 多项式的系数”J.Math.Soc.Japan。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
On some properties of polynomials related to hypergeometric modular forms
关于超几何模形式多项式的一些性质
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kondo;H.;Morishita;M.;Osaka;N.;Osaka;M.;Fukuyama;H.;Shibasaki;H.;中村 郁;M.Kaneko
  • 通讯作者:
    M.Kaneko
Kaneko, Masanobu: "On modular forms arising from a differential equation of hypergeometrictype"The Ramanujan J.. 7. 145-164 (2003)
Kaneko, Masanobu:“论由超几何型微分方程产生的模形式”The Ramanujan J.. 7. 145-164 (2003)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

金子 昌信其他文献

セール微分と楕円曲線のモジュラー一意化
椭圆曲线的塞尔微分与模统一
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tomoaki Nogawa;Takehisa Hasegawa;Koji Nemoto;Kazuhiro KONNO;金子 昌信
  • 通讯作者:
    金子 昌信
Fictitious domain method with the $L^2$-penalty and application to the finite element and finite volume methods
具有$L^2$惩罚的虚拟域方法及其在有限元和有限体积方法中的应用
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    周冠宇;齊藤宣一;福泉麗佳;金子 昌信;F. Hiroshima;Hideo Kubo;中山能力;G. Zhou and N. Saito
  • 通讯作者:
    G. Zhou and N. Saito
Spectrum of scalar quantum field model on a Lorentzian manifold
洛伦兹流形上的标量量子场模型的谱
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    周冠宇;齊藤宣一;福泉麗佳;金子 昌信;F. Hiroshima
  • 通讯作者:
    F. Hiroshima
Bernoulli numbers and zeta functions : with an appendix by Don Zagier
伯努利数和 zeta 函数:附 Don Zagier 的附录
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    荒川 恒男;知義 伊吹山;金子 昌信;D. Zagier
  • 通讯作者:
    D. Zagier
Hypergeometric modular forms and supersingular elliptic curves
超几何模形式和超奇异椭圆曲线
  • DOI:
    10.1090/crmp/030/07
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Kaneko;Naoya Todaka;金子 昌信;マサノブ カネコ;ナオヤ トダカ
  • 通讯作者:
    ナオヤ トダカ

金子 昌信的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('金子 昌信', 18)}}的其他基金

A new look into various arithmetic and topological invariants through the eyes of modular knots
从模结的角度重新审视各种算术和拓扑不变量
  • 批准号:
    21K18141
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Why is the multiple zeta value so ubiquitous?
为什么多重 zeta 值如此普遍?
  • 批准号:
    21H04430
  • 财政年份:
    2021
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fourier coefficients and zeros of modular forms
模形式的傅立叶系数和零点
  • 批准号:
    19F19318
  • 财政年份:
    2019
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Algebraic aspects of elliptic multiple zeta values
椭圆多重 zeta 值的代数方面
  • 批准号:
    17F17020
  • 财政年份:
    2017
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多重ゼータ値, 多重ゼータ関数の深化と新展開
多zeta值和多zeta函数的深化和新发展
  • 批准号:
    16H02143
  • 财政年份:
    2016
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
様々な重さ半整数の保型形式に関連する数論
与不同权重的半整数自守形式相关的数论
  • 批准号:
    14F04319
  • 财政年份:
    2014
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
多重ゼータ値とモジュラー形式、非可換何との関係
多个 zeta 值、模形式和非交换之间的关系
  • 批准号:
    17654007
  • 财政年份:
    2005
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
多重ベルヌ-イ数とゼータ関数
多个伯努利数和 zeta 函数
  • 批准号:
    08740022
  • 财政年份:
    1996
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
ハッセ不変量と直交多項式の数論
哈斯不变量和正交多项式的数论
  • 批准号:
    07740023
  • 财政年份:
    1995
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
楕円曲線と超幾何級数の数論
椭圆曲线和超几何级数数论
  • 批准号:
    04740036
  • 财政年份:
    1992
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了