Basic Research on Semiconductor Lasers with Vertical Microcavity

垂直微腔半导体激光器基础研究

基本信息

项目摘要

Various technological approaches have been performed to fabricate quantum dot structures which are potentially useful for optoelectronic device application and basic physics [1]. One of main goals is to manipulate both electrons and photons in nanostructures and microcavities. Towards this goal, it is important to develop nanofabrication and nano-scale optical characterization techniques. In this project, we investigate strained quantum wires and quantum dots for the semiconductor lasers of the next generation.First, we demonstrated spontaneous alignment of InGaAs quantum dots using multi-atomic step structures formed in MOCVD growth [6]. In this technique, first, GaAs epilayr with multi-atomic steps along straight lines was grown on vicinal GaAs substrate under appropriate growth conditions. Then the InGaAs quantum dots were grown selectively on the multi-atomic step edges using strain effects. This growth technique results in spontaneously aligned InGaAs quantum dots without any pre-processing technique prior to the growth.Second, we recently succeeded in fabricating quantum wire laser with vertical microcavity. The quantum wire laser inside the microcavity was fabricated using the selective growth technique. In the microcavity, triangular-shaped In0.3Ga0.7As strained quantum wires are grown between (111)A facets of [011]-oriented GaAs triangular prisms selectively grown on a SiO2 masked DBR mirror region. The quantum wires are comparatively strained owing to the difference of the lattice constants of GaAs and In0.3Ga0.7As. The cavity effect is confirmed by measuring photoluminescence with and without the microcavity. A much sharper photoluminescence spectral line was observed from the quantum wires with the microcavity compared to the sample without the cavity. The lasing oscillation of this sample was demonstrated at 77K,using optical pumping method.
已经执行了各种技术方法来制造量子点结构,其对于光电器件应用和基础物理学具有潜在的有用性[1]。其主要目标之一是在纳米结构和微腔中操纵电子和光子。为了实现这一目标,重要的是发展纳米纤维和纳米尺度的光学表征技术。在这个项目中,我们研究了用于下一代半导体激光器的应变量子线和量子点。首先,我们证明了使用MOCVD生长中形成的多原子台阶结构的InGaAs量子点的自发对准[6]。在该技术中,首先,在适当的生长条件下,在相邻GaAs衬底上生长出沿沿着直线的多原子台阶GaAs外延层。然后利用应变效应在多原子台阶边缘选择性生长InGaAs量子点。这种生长技术在生长前不需要任何预处理,就可以得到自发取向的InGaAs量子点。第二,我们最近成功地制备了具有垂直微腔的量子线激光器。采用选择性生长技术制备了微腔内的量子线激光器。在微腔中,三角形形状的In 0.3Ga 0.7As应变量子线生长在[011]取向的GaAs三角棱镜的(111)A面之间,选择性地生长在SiO2掩蔽的DBR反射镜区域上。由于GaAs和In_(0.3)Ga_(0.7)As的晶格常数不同,量子线的应变比较大。通过测量有无微腔的光致发光证实了腔效应。与没有腔的样品相比,从具有微腔的量子线观察到更尖锐的光致发光光谱线。利用光抽运方法,在77K下观察到了该样品的激光振荡。

项目成果

期刊论文数量(160)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
S.Wakabayashi: "“Fabrication of AlGaAs/GaAs Multi-QWRS with 15nm Wire Width Using Two-step Etching and MBE Regrowth"" JRDC International Symposium on Nanostructures & Quantum Effects,Tsukuba,Japan,Nov.17-18(1993). (1993)
S. Wakabayashi:“利用两步蚀刻和 MBE 再生法制造 15nm 线宽的 AlGaAs/GaAs 多 QWRS”,JRDC 国际纳米结构与量子效应研讨会,日本筑波,11 月 17-18 日(1993 年)。 (1993)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Arakawa: "“Quantum Wires and Dots for Quantum Nano-structure Laser with Microcavity"" JRDC International Symposium on Nanostructures & Quantum Effects,Tsukuba,Japan,Nov.17-18(1993). (1993)
Y.Arakawa:“微腔量子纳米结构激光器的量子线和点”,JRDC 国际纳米结构与量子效应研讨会,日本筑波,11 月 17-18 日(1993 年)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
荒川泰彦: "先端デバイス材料ハンドブック(電子情報通信学会編)" オーム社, 40 (1993)
荒川康彦:《先进器件材料手册(电子信息通信工程师学会编)》Ohmsha,40(1993)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Arakawa: "“Fabrication and Optical Properties of Quantum Wire and Dots for Microcavity Quantum Nano-structure Lasers"(Invited)" 1st International Workshop of the European Research Network on Physics and Technology of Mesoscopic Systems(PHANTOM). (1993)
Y.Arakawa:“微腔量子纳米结构激光器的量子线和点的制造和光学特性”(特邀)”欧洲介观系统物理与技术研究网络(PHANTOM)第一届国际研讨会(PHANTOM)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
M.Willatzen, T.Tanaka, and Y.Arakawa: ""Polarization Dependence of Optoelectronic Properties in Quantum Dots and Quantum Wires---Consequences of Valence-Band Mixing"" IEEE J.of Quantum Electronics. Vol.30, No.3. 640-653 (1994)
M.Willatzen、T.Tanaka 和 Y.Arakawa:““量子点和量子线中光电特性的偏振依赖性——价带混合的后果””IEEE J.of Quantum Electronics。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ARAKAWA Yasuhiko其他文献

ARAKAWA Yasuhiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ARAKAWA Yasuhiko', 18)}}的其他基金

Solid state Quantum Electrodynamics in Quantum Dot Nanocavity Multiply Coupled Quantum Systems and Its Application to Novel Light Sources
量子点纳米腔多耦合量子系统中的固态量子电动力学及其在新型光源中的应用
  • 批准号:
    15H05700
  • 财政年份:
    2015
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Specially Promoted Research
Development of Blue-Violet GaN Microcavity Surface-Emitting Lasers far Next-Generation Optical Memory Systems
开发蓝紫 GaN 微腔表面发射激光器下一代光学存储系统
  • 批准号:
    13355015
  • 财政年份:
    2001
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fabrication of quantum dot lasers
量子点激光器的制造
  • 批准号:
    10355004
  • 财政年份:
    1998
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Fundamental research on 1.5μm quantum cascade lasers for optical communication
光通信用1.5μm量子级联激光器基础研究
  • 批准号:
    10305028
  • 财政年份:
    1998
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of semiconductor integrated devices for coherent THz electromagnetic field generation
相干太赫兹电磁场产生半导体集成器件的开发
  • 批准号:
    08555081
  • 财政年份:
    1996
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
High speed photon-electron interaction in semiconductor nanostructures and its application to high performance semiconductor lasers
半导体纳米结构中的高速光子-电子相互作用及其在高性能半导体激光器中的应用
  • 批准号:
    07405018
  • 财政年份:
    1995
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Quantum Semiconductor Electronics
量子半导体电子
  • 批准号:
    07044120
  • 财政年份:
    1995
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Development of Semiconductor Lasers with Microcavity and Quantum Wires
微腔和量子线半导体激光器的开发
  • 批准号:
    06555100
  • 财政年份:
    1994
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Study on Fabrication of Quantum Wire Lasers
量子线激光器的制造研究
  • 批准号:
    04555083
  • 财政年份:
    1992
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Developmental Scientific Research (B)
Fundamental Research on Quantum Microcavity Lasers
量子微腔激光器基础研究
  • 批准号:
    03452178
  • 财政年份:
    1991
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (B)

相似海外基金

CAREER: Controlling the Deformability of Quantum Dots Solids for Wearable NIR Optoelectronics
职业:控制可穿戴近红外光电器件的量子点固体的变形能力
  • 批准号:
    2337974
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Continuing Grant
STTR Phase I: High-Sensitivity Flexible Quantum Dots/Graphene X-Ray Detectors and Imaging Systems
STTR 第一阶段:高灵敏度柔性量子点/石墨烯 X 射线探测器和成像系统
  • 批准号:
    2322053
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Standard Grant
Mid-infrared quantum dots for room temperature photodetectors and emitters
用于室温光电探测器和发射器的中红外量子点
  • 批准号:
    DP240101309
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Discovery Projects
RII Track-4:NSF: In-vitro Cytotoxicity Assessment of Synthesized Quantum Dots for Enhanced Cell Imaging
RII Track-4:NSF:用于增强细胞成像的合成量子点的体外细胞毒性评估
  • 批准号:
    2327429
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Standard Grant
Infra-Plas: Colloidal Quantum Dots for Short-Wave Infrared Plasmonic Lasers
Infra-Plas:用于短波红外等离子激光器的胶体量子点
  • 批准号:
    EP/Z000912/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Fellowship
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Research Grant
High color purity and multicolor luminescence based on precise synthesis and electronic structure design of multinary quantum dots
基于多元量子点的精确合成和电子结构设计的高色纯度和多色发光
  • 批准号:
    23H01786
  • 财政年份:
    2023
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Structure-Optoelectronic Property Relationships in Homogeneous and Heterogeneous/Gradient Alloyed Colloidal I-(II)-III-VI Quantum Dots
均质和异质/梯度合金胶体 I-(II)-III-VI 量子点的结构-光电性质关系
  • 批准号:
    2304949
  • 财政年份:
    2023
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Standard Grant
NSF-NSERC: Building a two-qubit controlled phase gate using laterally coupled semiconductor quantum dots
NSF-NSERC:使用横向耦合半导体量子点构建两个量子位控制的相位门
  • 批准号:
    2317047
  • 财政年份:
    2023
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Standard Grant
Nanoscale Interaction of Engineered Quantum Dots with Cephem Skeleton
工程量子点与头孢烯骨架的纳米级相互作用
  • 批准号:
    2313252
  • 财政年份:
    2023
  • 资助金额:
    $ 4.35万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了